Timing Analysis in P2P Botnet Traffic Using Probabilistic
Context-Free Grammars

*
Chen Lu
13 Riggs Hall
Clemson University
lu4@clemson.edu

ABSTRACT

Botnets are becoming a major source of spam, private data
and money steal and other cybercrime. During the battle
with security communities, botnets became Tailored Trust-
worthy Spaces (TTS). Bot herders first used encryption and
access control of the botnet command and control channel
to secure botnet communications. The use of fastflux and
P2P technologies help botnets become more resilient to de-
tection and takendown. Their fast evolving propagation,
command and control, and attacks make botnets good ex-
amples of moving targets. Detecting and removing botnets
has become a difficult and important task for security com-
munity. In this paper, we apply timing analysis on P2P hi-
erarchical botnet traffic, since timing signatures commonly
exist in automated network processes. We extend previous
work to use probabilistic context-free grammars (PCFGs),
a more expressive grammar in the Chomsky hierarchy. Ex-
periment results of simulated P2P botnet show that PCFGs
have accurate detection rates. Our approach provides pos-
sible “exploits” to compromise TTS and moving target sys-
tems. Therefore timing signatures should be considered in
design to make the system more secure and resilient.

Categories and Subject Descriptors

C.2.0 [Computer Communication Networks|: General—
Security And Protection; C.2.3 [Computer Communica-

tion Networks]: Network Operations—Network Monitor-

mng

General Terms

Security

*Chen Lu is a Ph.D student with The Holcombe Department
of Electrical and Computer Engineering, Clemson Univer-
sity, Clemson, SC, 29634 USA

JrRichard R. Brooks is an Associate Professor with The Hol-
combe Department of Electrical and Computer Engineering,
Clemson University, Clemson, SC, 29634 USA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CSIIRW 12, October 30 - November 2, Oak Ridge, Tennessee, USA
Copyright (©)2012 ACM 978-1-4503-1687-3 ... $15.00.

Richard R. Brooks !
313-C Riggs Hall
Clemson University
rrb@acm.org

1. INTRODUCTION

A botnet is a network of compromised computers for mali-
cious use. In recent years, botnets are recognized as a major
threat to Internet security [15]. Computers compromised by
malware, referred to as bots, are “herded” by command and
control (C&C) servers for sending spam, stealing private in-
formation and money, performing distributed denial of ser-
vice attacks, and other kinds of cybercrime [16]. To achieve
their malicious purposes and avoid detection, bot herders
use various techniques to secure the botnet as a trustworthy
network.

In early botnets, C&C channels used standard network
protocols, such as IRC and HTTP. Bot herders used IRC
configuration to restrict access to bots, secure the channel
and provide a list of users authorized to control the bots [2].
For HTTP botnets, encryption secures the C&C communi-
cations. For example, earlier versions of the Zeus botnet
(Zbot) use RC4 encryption [5]. New variants of Zeus use
more advanced AES encryption [1].

Recently, new techniques make botnets more resilient and
secure. With fastflux, the botnet can change the IP ad-
dress or domain name of the C&C server rapidly, making it
difficult to trace and investigate IP or domain names [14].
P2P technologies also create botnets with new hierarchical
topologies [3, 14]. The P2P version of Zbot [4] does this to
avoid the single point failure of centralized botnets. Their
quickly evolving C&C communications structure makes bot-
nets good examples of moving targets [7].

In this paper, we apply timing analysis on P2P hierarchi-
cal botnet traffic, providing an“attack” on TTS and moving
targets. In previous work, hidden Markov Models (HMMs)
have success in centralized Zeus botnet traffic detection us-
ing timing analysis [9]. Since HMMs are probabilistic regular
grammars, which are the simplest grammar in the Chomsky
hierarchy and can not represent recursive patterns [13], they
failed to detect P2P botnet traffic [10]. Therefore, we apply
a more expressive grammar, probabilistic context-free gram-
mars (PCFG) for P2P hierarchical botnet traffic detection
in this work.

We simulate two P2P botnets using our campus cloud,
based on two known PCFGs. After collecting timing data
sets for each botnet, we use the LALR parser of the grammar
to parse them. While parsing, the production probability is
estimated from the frequencies of the productions used. Us-
ing the estimated production probabilities, we design a x>
test to determine whether or not two data sets are gener-
ated from the same botnet. Experimental results show that
our PCFG approach accurately detects the simulated P2P

botnet traffic.

The rest of the paper is organized as follows: in Section
2, we give PCFG background. Our PCFG estimation and
detection approaches are also given. The hierarchical botnet
traffic detection application is in Section 3. And we close
this paper with a summary of our work and suggestions for
future work in Section 4.

2. PCFG ESTIMATION AND DETECTION

2.1 Probabilistic Context-Free Grammars

In this paper, we use standard notation for probabilistic
context-free grammars. A context-free grammar (CFG) is a
tuple G = (N, X, R, S) where:

1. N is a set of nonterminal symbols,
2. ¥ is a set of terminal symbols,

3. R is a set of production rules in the form of A — «,
where A € N and a € (XUN)",

4. S is the start symbol, which is in V.

As a convention, we use A, B, ... to denote nonterminal
symbols, a, b, ... to denote terminal symbols and «, 3, ... to
denote strings in (X U N)*. T(G) is used to represent the
set of trees that can be generated by G, and L(G) is used
to represent the set of sentences (a sequence of terminals)
that can be generated by GG. Based on depth-first search of
a tree t € T(G), t is corresponding to a sentence s € L(G).
Figure 1 shows a simple example of a CFG, a tree generated
by the CFG. The corresponding sentence of this tree is bab.

Terminals: a, b
S

Nonterminals: S, C O\

Productions: @
5->CC; a‘/

C->aC;

C->b;

(a) CFG

O €

0%

(b) Tree

Figure 1: An example of CFG and a tree

In this paper, we focus on probabilistic CFGs (PCFGs) for
pattern analysis, due to advantages of stochastic approaches
for CFGs [8, 11]. For PCFGs, the ability to accurately de-
tect rule probability is more important than to determine
the language membership[8]." So in this paper, we assume
production rules of the underlying system are known and
data sets are languages of the grammar. Also, we only con-
sider finite data sets.

2.2 Production Probability Estimation

We estimate production probabilities from data sets by
maximum likelihood (ML) estimation. In this section, we
introduce the ML estimation for both tree sets and sentence
sets.

In fact, ill-formed strings can be modeled by production
rules with extremely low probability. So the language mem-
bership problems can still be transferred into detecting rule
probability.

Given a finite tree set T, we use f(A — «,t) to represent
the frequency of the production A — « occurs in a tree
t € T. Similarly, f(A,t) represents the frequency of A occurs
in t. The ML estimates production probabilities from a tree
set by equation:

ZteT f(A — a,t)
Yier (A D)

which is the ratio between the number of occurrences of
the production A — « and the number of occurrences of
the nonterminal A in the tree set. It is easy to find that
f(At) =3 f(A— a,t). So after finding frequencies of all
productions of a tree set, we can use Equation 1 to estimate
a proper PCFG.

Real-world data sets are sets of sentences. For a sen-
tence set S, we need to parse the sentence to get the fre-
quency of each production that is used in generating the
sentence. Given production rules, a common and efficient
parser, LALR (LookAhead-Left-to-Right) parser can be used
to parse sentences. We choose LALR parser since its parsing
table is considerably smaller than other parsers, and most
common syntactic structures can be expressed conveniently
by it [6]. The parser construction and parsing processes can
be found in [6] in detail. In this paper, we enhance the pars-
ing process by counting the frequency of each production
rule that is used. After parsing, we use relative frequen-
cies to estimate production probabilities, which is the ML
estimate of the tree data sets.

2.3 PCFG Detection

Once PCFGs are estimated from data sets, we design a x°
test to detect if two data sets are consistent, i.e. generated
from the same source PCFG. x? test are usually used to test
whether or not two distributions are equal [17]. We adapt
x? test to determine the equivalence between two data. sets.
For a x? test, a statistical significance level § is necessary,
which defines the false positive rate the user can tolerate. It
provides a confidence on the detection result. Refer to stan-
dard statistical texts, such as [12] to choose an appropriate
value for §. Since ML estimation for sentences is equivalent
to trees, we just consider tree sets in the following discussion
without loss of generality.

Given two tree sets, T1 and T», let n; = f(A,T1) be the
number of a nonterminal A in tree set 71 and n; ; = f(A —
a,T1) be the number of production A — « in tree set Ti.
Similarly m; = f(A4,T2) and m;; = f(A — «,T2). To
determine if 77 and T3 are equivalent, we define the statistic
as:

pA—a)= (1)

ZZ le,j—nzpm +ZZ mw mzpw) (2)

NiPi, mipi,;
where p; ; = %

The degree of freedom (DOF) of the test is determined
by |R| — |N|, where |R| is the number of production rules
and |N| the number of nonterminals. With the statistical
significance § and the DOF, we can find the critical value
X2 If x* > x%, reject the hypothesis that 71 and T, are
equivalent, otherwise accept that they are equivalent.

3. APPLICATION

In this section, we apply our approach to detect P2P hi-
erarchical botnet traffic. A botnet is usually centralized,

controlled by a C&C server. HMMs can accurately detect
Zeus botnet traffic [9], which is one of the centralized bot-
nets. To avoid the disadvantages of centralized structures,
hierarchical botnets use P2P techniques[3, 4, 14]. HMMs
failed to detect hierarchical botnet traffic, because they can
not represent recursive patterns of hierarchical botnet traf-
fic [10, 13]. Therefore, we apply PCFG detection approach
to this problem. We simulate hierarchical P2P Zeus bot-
nets using the campus computer cloud, because neither the
source code nor the malware is available online. Using a
similar traffic analysis approach in [9], we consider inter-
packet timing delays as observations, because i) they filter
out constant network latencies; ii) they relate to the pro-
cessing time required by a specific malicious action of a bot;
iii) they are easy to get without intensive work on reverse
engineering on encrypted packets. The experiment results
of simulated hierarchical botnet traffic data show that our
approach has accurate detection rates. Since automated net-
work processes all have timing profiles and encryption can
not remove timing signatures from malicious processes, our
detection approach can be translated to TTS and moving
targets as well.

3.1 Hierarchical Botnet

Hierarchical botnets are simulated using campus cloud
computers. We use TCP as C&C communications to make
the communication in the hierarchical botnet reliable. A
C&C server is set up to control a tree-structured computer
network, as shown in Figure 2. We use 40 nodes to construct
a hierarchical botnet with 10 levels.

!/ N

5
/i

J/

Figure 2: Hierarchical Botnet

The C&C server sends out commands repeatedly. After
receiving the command, every bot executes it, by waiting for
a certain amount of time (different delays for different mali-
cious actions are in Table 1), and replies back. Every node
also passes the commands from its parent node to its chil-
dren nodes, and passes back children nodes’ responses. All
forwarded messages are low-latency and different messages
use separate packets. This is important, because in this
way, every intermediate node can take control of sub-botnet
(tree structure below it) and preserves timing patterns of all
nodes in its sub-botnet, not only its direct children nodes.
This also mimics the behaviors of a hierarchical botnet. Ma-
licious actions and corresponding timing delays in Table 1
are chosen for illustration. Actual botnets may have differ-
ent malicious behaviors and associated timing delays.

Table 1: Delay time table

Malicious actions Delay time
(in seconds)

i (stealing identity) 5

s (sending spam) 10

m (installing malware) 15

d (performing DDoS attacks) 20

3.2 Data Collection

We simulate two hierarchical botnets based on PCFGs
in Table 2. The first three production rules represent the
hierarchical structure of a botnet. The last four produc-
tions represent the behaviors of bots in each botnet. Ma-
licious actions follow the corresponding production proba-
bilities. These production rules and associated probabilities
are used for illustration. Actual botnets may have differ-
ent structures and different probabilities. For example, P2P
Zbots are mainly targeted for identify theft, therefore, the
production for this malicious action of P2P Zbot will have
a dominant high probability compared to other malicious
actions.

Table 2: Hierarchical Botnet PCFGs

Productions | PCFG1 | PCFG2
A= (4) 0.3 0.4
A— AA 0.3 0.2
A— B 0.4 0.4
B —i 0.2 0.3
B —s 0.3 0.1
B—m 0.3 0.2
B —d 0.2 0.4

Tshark is used to capture packet timing data. Inter-packet
delays are then calculated by subtracting the previous packet
reception time from the time of the current packet. We
use Table 3 to translate timing data into terminals. Dif-
ferent ranges can be found by plotting the histogram of the
data or using clustering approaches, such as k-means or self-
organizing maps, etc. We collected 11 data sets for each
botnet and each data set contains several hundred packets.

Table 3: Delay-Terminal lookup table
Delay time ranges | Terminals
(in seconds)
[0.0,2.0)
[2.0,4.0)
[4.0,7.0)
[7.0,13.0)
[13.0,17.0)
[17.0,25.0)

Q.B W e — —

3.3 Detection Results

We build the LALR parser from production rules in Table
2, and parse the symbolized sentences to estimate produc-
tion probabilities for each data set. Using the x? test, we
detected whether two data sets are generated from the same
source PCFG (meaning that they are generated from the

same hierarchical botnet). If two sets are generated by dif-
ferent PCFGs, but they are detected as equivalent, we have
a false positive. If two data sets are generated by a same
PCFG, and the x? test accepts that they are equivalent, we
count it as a true positive. By testing each pair of these
22 data sets, we get the detection result in Table 4. With
a high true positive rate and a low false positive rate, we
can dependably detect hierarchical botnet traffic using our
detection approach.

Table 4: Botnet Detection Result
Data Set Source | PCFG1 | PCFG2
TP rate 96.7% 93.4%
FP rate 1.6% 1.6%

4. CONCLUSIONS

In this paper, we applied timing analysis on P2P hierarchi-
cal botnet traffic using PCFGs. We use maximum likelihood
method to estimate production probabilities from data sets.
Statistical x? test is used to determine whether two data
sets are equivalent. This approach is used to detect simu-
lated hierarchical botnet traffic. Detection results show that
it can appropriately detect recursive patterns from different
hierarchical botnets.

Since botnets are good examples of TTS and moving tar-
gets [7], our approach provides possible “exploits” on these
systems. Because our detection approach works with tim-
ing profiles, which commonly exist in automated network
processes, it can be easily extended to other systems. Re-
move timing profiles is difficult with performance implica-
tions. Therefore, taking timing signatures into considera-
tion while designing TTS and moving targets is important
to make the system more resilient and secure.

5. ACKNOWLEDGMENTS

This material is based upon work supported by, or in
part by, the Air Force Office of Scientific Research con-
tract/grant number FA9550-09-1-0173, NSF contract/grant
numbers CNS-1049765 and NSF-OCI 1064230, US Dept of
State award number S-LMAQM-12-GR-1033, and a gift from
BMW Manufacturing Corporation.

The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The authors gratefully ac-
knowledge this support and take responsibility for the con-
tents of this report.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either ex-
pressed or implied, of the Air Force Research Laboratory,
National Science Foundation, US Department of Defense,
US Department of State, or BMW Corporation or the U.S.
Government.

6. REFERENCES

[1] Citadel - An Open-Source Malware Project.
http://blog.seculert.com/2012/02/
citadel-open-source-malware-project.html.

[2] Robot Wars - How Botnets Work.
http://wuw.windowsecurity.com/articles/
robot-wars-how-botnets-work.html.

[3] The threat from P2P botnets.
http://www.securelist.com/en/blog/654/Lab_
Matters_The_threat_from_P2P_botnets.

[4] ZeuS Gets More Sophisticated Using P2P Techniques.
http://wuw.abuse.ch/7p=3499.

[5] Zeus: God of DIY Botnets. http://wuw.fortiguard.
com/analysis/zeusanalysis.html.

[6] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.
Compilers: Principles, techniques, and tools, 2nd
edition. Pearson Education Inc, 2006.

[7] M. Bailey, E. Cooke, F. Jahanian, Y. Xu, and
M. Karir. A survey of botnet technology and defenses.
Conference For Homeland Security, Cybersecurity
Applications and Technology, 0:299-304, 2009.

[8] S. Geman and M. Johnson. Probabilistic grammars
and their applications. In International Encyclopedia
of the Social & Behavioral Sciences, pages
12075-12082, 2002.

[9] C. Lu and R. Brooks. Botnet traffic detection using
hidden markov models. In Proceedings of the Seventh
Annual Workshop on Cyber Security and Information
Intelligence Research, CSIIRW ’11, pages 31:1-31:1,
New York, NY, USA, 2011. ACM.

[10] C. Lu and R. Brooks. P2p hierarchical botnet traffic
detection using hidden markov models. Learning from
Authoritative Security Experiment Results Workshop
Proceedings, 2012.

[11] C. D. Manning and H. Schutze. Foundations of
statistical natural language processing. The MIT
Press, 1999.

[12] J. Neter, W. Wasserman, and M. H. Kutner. Applied
linear regression models. Irwin Press, 1989.

[13] C. Noam. Three models for the description of
language. Information Theory, IRE Transactions,
2(3):113-124, 1956.

[14] G. Ollmann. Botnet communication topologies. White
Paper of Damballa, 2009.

[15] L. Wei, T. Mahbod, and A. A. Ghorbani. Automatic
discovery of botnet communities on large-scale
communication networks. In Proceedings of the 4th
International Symposium on Information, Computer,
and Communications Security, ASTACCS ’09, pages
1-10, New York, NY, USA, 2009. ACM.

[16] C. Wilson. Botnets, cybercrime, and cyberterrorism:
Vulnerabilities and policy issues for congress. CRS
Report for Congress, 2009.

[17] D. Zwillinger. Standard mathematical tables and
formulae. Chapman & Hall/CRC, 2003.

