
 

 

    Abstract— A preliminary study by Sneddon et al. (2005) 

using visual working memory tasks coupled with quantified 

EEG (qEEG) analysis distinguished mild dementia subjects 

from normal aging ones with a high degree of accuracy. The 

present study hypothesizes that a simpler task such as having a 

subject count backwards mentally by ones can be coupled with 

qEEG to yield a similar degree of accuracy for classifying early  

dementia. The study focuses on participants with mild cognitive 

impairment (MCI) and includes both a delayed visual match-to-

sample (working memory) task and a counting backwards task 

(eyes closed) for comparison. The counting backwards protocol 

included 15 normal aging and 11 MCI participants, and the 

working memory task included 9 normal aging and 7 MCI 

individuals. The EEG data were quantified using Tsallis 

entropy, and the brain regions analyzed included the prefrontal 

cortex, occipital lobe, and the posterior parietal cortex. The 
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counting backwards task had a sensitivity of 82%, a specificity 

of 73%, and an overall accuracy of 77% whereas the working 

memory task had a sensitivity of 100%, a specificity of 89%, 

and an overall accuracy of 94%. The results suggest that simple 

tasks such as having a subject count backwards may distinguish 

MCI (p<0.05) sufficiently to use as a rough screening tool, but 

psychophysical tasks such as working memory tests appear a 

potentially much more useful approach for diagnosing either 

MCI or very early Alzheimer’s disease. 

I. INTRODUCTION 

EURODEGENERATIVE diseases such as Alzheimer’s 

have long been a focus of research in the scientific 

community. Alzheimer’s disease (AD) is the most common 

form of dementia, and gradually destroys the host’s brain 

cells. Recent findings estimate that 35 million people 

worldwide currently suffer from AD. The number is 

expected to reach 115 million by the year 2050. Mild 

cognitive impairment (MCI) is a transitional stage of 

impairment that is not as severe as AD. Persons with MCI 

show short term memory loss, yet their symptoms do not 

interfere with daily activities. This condition can develop 

into any of several forms of dementia or revert back to a 

normal state. Nevertheless, a patient with MCI has a greater 

risk of developing AD as opposed to a cognitively normal 

older adult. It is hoped that early detection of MCI will allow 

therapeutic interventions to slow or halt progression of the 

condition. 

Neuroimaging is a well-accepted approach for definitive 

diagnosis of dementia. The neuroimaging methods include 

single-photon emission computerized tomography (SPECT), 

positron emission tomography (PET), and magnetic 

resonance imaging (MRI). SPECT, PET, and MRI have been 

successful at recognizing AD at an early stage but they all 

present problems that detract from their use as routine 

screening methods. Both PET and SPECT pose radiation 

risks and all are time-consuming, inconvenient, and 

expensive.  

Electroencephalography (EEG) is another well-accepted 

technology that may potentially solve this problem. 

Nonlinear analysis of rapidly sampled EEG data has been 

shown to reveal unique features of various dynamical 

neurological diseases such as Parkinson’s, epilepsy and AD 

[1], [2]. 
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Linear and nonlinear analyses of EEG have shown promise 

for discriminating mild and severe dementia sufferers from 

normally aging persons [3]-[7]. Nonlinear analysis has given 

better results because brain dynamics embodied in EEG data 

show nonlinear characteristics. Applying linear methods to a 

nonlinear system often provides confounding results. Among 

other approaches, EEG has been used for studying dementias 

for several decades [8]. The promising results with nonlinear 

approaches have led to an increasing interest in their clinical 

applications for early dementia diagnosis. 

To achieve a high level of accuracy in distinguishing very 

mildly impaired individuals from normal aging ones, a 

working memory task may need to be used with an 

appropriate method of analyzing the EEG. A previous study 

has shown that one qEEG measure for EEG analysis failed to 

discriminate normal from cognitively impaired participants 

when using a psychophysical task that did not tax the brain 

areas affected earliest by Alzheimer’s changes in contrast to 

the use of working memory tasks [9].  

 

II.  METHODOLOGY 

 

Data were gathered at the University of Kentucky Medical 

Center (UK) and analyzed through a collaboration between 

Oak Ridge National Laboratory (ORNL) and the University 

of Tennessee Knoxville (UT).  Institutional Review Board 

approvals were obtained for ORNL, UK, and UT before any 

EEG data acquisition or analysis was conducted. Participants 

were identified by the UK Alzheimer’s Disease Research 

Center and EEG data were recorded in the laboratory of Dr. 

Y. Jiang of the Behavioral Science Department in the 

College of Medicine.  Participants were free of genetic risk 

factors for AD, co-existing brain conditions, or influence of 

psychoactive drugs. 

Electroencephalograms (EEG) were recorded from 64 

scalp electrodes on each subject with a sampling rate of 500 

Hz using Neuroscan equipment. The electrode arrangement 

is the standard 10-20 system, consistent with the guideline 

from the American Clinical Neurophysiology Society. EEG 

was recorded during two tasks: (1)  counting backwards with 

eyes closed (ORNL protocol), and (2)a delayed match-to-

sample task (visual working memory task). Non-invasive 

EEG is prone to picking up many muscle artifacts such as 

eye blinks. Having the subjects close their eyes for the 

ORNL protocol helped minimize the EEG noise. Data from 

26 participants were analyzed for the ORNL protocol, 15 

normal aging and 11 MCI, and data from 16 participants 

were analyzed for the visual recall task, 9 normal aging and 7 

MCI. 

Tsallis entropy is a nonlinear measure for quantifying EEG 

data by analyzing the variance of the signal in both a slow 

and rapid manner [9]. Equations (1) and (2) show how the 

slow and rapid variances, respectively, were computed using 

MATLAB. The slow variance is simply the measure of 

variance throughout the entire signal (or epoch of signal 

being analyzed), and the rapid variance is the variance from 

each critical point to the next. Critical points correspond to 

local maxima and minima in the data. The Tsallis entropy 

value (qEEG) is then simply the ratio of all rapid variances 

divided by the slow variance and then subtracted from one as 

shown in equation (3). Tsallis entropy has been shown to be 

a good analysis method to use with working memory tasks 

[9], and this study used the same method for the ORNL 

protocol tasks. 
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   For the ORNL protocol, 30 seconds of data were used 

from each participant, and all 64 channels were analyzed for 

qEEG values. Brain regions analyzed consisted of the 

prefrontal cortex (electrodes FP1, FPZ, and FP3) as well as 

the posterior parietal (electrodes PO3, POZ, and PO4) and 

occipital regions (electrodes CB1, O1, OZ, O2, and CB2). 

Dementia affects the brain early in the prefrontal, temporal, 

parietal, and occipital regions [10].  

The delayed match-to-sample task was very similar to that 

used by Sneddon et al. [9]. This working memory task was a 

simplified version of that used by Guo et al [11], in which 

participants were shown a sample target object at the 

beginning of each memory trial. They were then asked to 

identify a sequence of common objects, including the target 

object and non-targets, via button press. Event-related 

potentials (ERP) responses were averaged EEG signals that 

were time locked with the presentation of each visual 

stimulus. After presentation of the picture, we identified ERP 

responses at 150 milliseconds (P150) and 300 milliseconds 

(P300). For the first 150 milliseconds after the stimulus was 

shown, ERPs were selected from the posterior parietal region 

(PO3, POZ, and PO4). For 151-300 milliseconds (P300) 

after the stimulus, ERPs were selected from the prefrontal 

cortex (FP1, FPZ, and FP3). These time intervals for 

corresponding brain regions are based on previous ERP and 

fMRI studies involving the working memory [11]-[14]. 

III.   RESULTS 

A. ORNL Protocol 

Two separate qEEG ratios were computed for the Oak 

Ridge protocol using unfiltered data: a ratio between the 



  

prefrontal cortex and posterior parietal lobe, and one 

between the prefrontal cortex and occipital lobe. For the 

prefrontal cortex and posterior parietal lobe, the ratio was 

computed as the prefrontal qEEG value divided by the 

posterior parietal qEEG. These qEEG ratios had a range of 

0.81 to 2.18. A qEEG ratio of 1.15 seemed to best 

distinguish between normal and MCI participants. Nine out 

of the 11 MCI patients (two false negatives) had qEEG ratios 

above 1.15 with a mean of 1.31. On the other hand, 11 out of 

15 normal (four false positives) participants had a qEEG 

ratio below 1.15 with a mean of 1.17. The sensitivity was 

found to be 82%, the specificity was 73%, and the accuracy 

was 77%. A graphical representation of the range of qEEG 

values for this ratio is shown in Figure 1. 

For the qEEG ratio obtained from prefrontal cortex and 

occipital lobe, the ratio was computed as the qEEG value 

from the prefrontal cortex divided by the qEEG value from 

the occipital lobe. The ratios ranged from 0.84 to 3.19 

(graphical representation in Figure 2). For this specific ratio, 

a qEEG ratio of 1.2 seemed to discriminate best between the 

two groups. Once again, 9 out of the 11 MCI patients 

showed a qEEG ratio above 1.2 whereas 11 out of 15 normal 

participants showed a ratio below 1.2. The mean qEEG ratio 

was 1.65 for the MCI patients and 1.21 for the normal 

participants. The sensitivity and specificity were again 82% 

and 73% respectively, with overall accuracy of 77%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Boxplot representing the differences of the qEEG ratio of the 

prefrontal cortex and posterior parietal lobe between the MCI and normal 

aging subjects (ORNL protocol).  Boxplots give 0, 25th, median, 75th, and 

100 percentile values; red dots represent outliers. 

 

A two sample F-test to check for equal variance was 

carried out for both the posterior parietal and occipital qEEG 

ratios. The prefrontal vs. posterior parietal qEEG ratio had 

an F-value of 1.31 which was less than the F-critical value of 

2.86 suggesting the variance between the qEEG ratios for all 

the participants were equal. On the other hand, the prefrontal 

vs. occipital lobe qEEG ratio showed an F-value larger than 

the F-critical value (3.07>2.60) indicating an unequal 

variance between the two groups.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 2. Boxplot representing the differences of the qEEG ratio of the 

prefrontal cortex and occipital lobe between the MCI and normal aging 

subjects (ORNL protocol).  Boxplots give 0, 25th, median, 75th, and 100 

percentile values; red dots represent outliers. 

 

After identifying the variances as equal or unequal, a one 

tailed t-test was performed for each dataset. The t-statistic 

obtained from the prefrontal vs. occipital qEEG ratio showed  
 

 

 

 

 
Fig. 3. Boxplot representing the differences of the qEEG ratio of the 

prefrontal cortex (P300) and posterior parietal cortex (P150) between the 

MCI and normal aging subjects (visual working memory task).  Boxplots 

give 0, 25th, median, 75th, and 100 percentile values; red dots represent 

outliers (none for the MCI group).   

 

that there was a statistically significant difference in mean 

qEEG ratios between normal and MCI participants (p<0.05). 



  

However, the prefrontal vs. posterior parietal qEEG ratio 

failed to show any significant discrimination in mean qEEG 

ratios between normal and MCI participants (p>0.15).  

 

B. Visual Working Memory Task 

A qEEG ratio was calculated for the prefrontal cortex 

(P300) divided by the posterior parietal lobe (P150) for all 

the participants. The qEEG ratios ranged from -2.61 to 0.88 

for MCI patients and from 0.7 to 4.0 for the normal 

participants. The mean qEEG ratios were 0.004 and 1.52 for 

the MCI and normal groups respectively (graphical 

representation in Figure 3). A ratio of 0.9 seemed to be the 

optimum cutoff point for both groups. Using this criterion, 7 

out of 7 MCI patients had a qEEG ratio below 0.9, and 8 out 

of 9 normal participants had a ratio above 0.9. The 

sensitivity was 100% (7 out of 7 MCI patients) and the 

specificity was 89% (8 out of 9 normal participants). The 

overall accuracy was 93.75%. 

The F-test performed on the working memory task to 

check for equal variance yielded an F-value of 0.84. Since 

the F-value was greater than the critical value of 0.28, we 

concluded that the variances in the MCI and normal groups 

were unequal. A two sample, one tailed t-test assuming 

unequal variance showed that pre-dementia had a significant 

effect on the mean qEEG ratio between normal and MCI 

participants in the prefrontal and posterior parietal  

electrodes (p<0.02).  

IV. DISCUSSION 

For the ORNL protocol, multiple regions were explored to 

find the best possible combinations of electrodes to 

successfully differentiate the subjects.  Statistical analyses of 

the results indicated there was no significant difference in the 

qEEG ratios between normal and MCI patients using the 

prefrontal vs. posterior parietal regions (p>0.14). The 

occipital ratio achieved a significant p-value, so it appears 

that the occipital ratio is preferable for the ORNL protocol.  

However, the results indicate that this simple protocol might 

serve at best as a screening tool unless better discrimination 

can be achieved with further work. Additional brain regions 

such as the temporal lobe could be analyzed for this protocol 

as this region has been suggested as a target area for 

detecting early AD-related changes. Use of an artifact filter 

to remove eye blinks and other muscle movement for the 

ORNL protocol might also be explored since it uses longer 

periods of scalp data than the visual working memory task. 

 Analysis of the working memory task showed a large and 

statistically significant difference (p<0.02) in mean qEEG 

ratios between the groups This finding is supported by the 

Sneddon et al preliminary study [9], which found a 

sensitivity of 88% and specificity of 94% in unmatched 

participants using a very similar psychophysical task that 

involves brain areas affected early in the cognitive 

impairment process.  

   The sample sizes were quite small for both protocols. 

Future studies should expand these sample sizes. 

In summary, coupling the use of a delayed visual working 

memory task with Tsallis entropy-based qEEG analysis has 

been shown to be a highly promising potential diagnostic 

tool for MCI and early dementia. 

ACKNOWLEDGMENT 

 .  The authors acknowledge with much appreciation 

helpful discussions with Drs. Robert Sneddon and W. 

Rodman Shankle in the course of this study. 

REFERENCES 

[1] A. Beuter, C. Labric, and K. Vasilakos, “Transient dynamics in motor 

control of patients with Parkinson’s disease,” Chaos, vol. 1, pp. 279-

286, 1991. 

[2] L. Glass, “Nonlinear dynamics of physiological function and control,” 

Chaos, vol. 1, pp. 247-250, 1991. 

[3] C. Babiloni, G. Binetti, E. Cassetta, G. Dal Forno, C. Del Percio, F. 

Ferreri, R.Ferri, G. Frisoni, K. Hirata, B. Lanuzza, C. Miniussi, D. V. 

Moretti, F. Nobili, G. Rodriguez, G. L. Romani , S. Salinari, P. M. 

Rossini, “Sources of cortical rhythms change as a function of 

cognitive impairment in pathological aging: a multicenter study,” 

Clin. Neurophysiol., vol. 117, no. 2, pp. 252-68, 2006.  

[4] M. Buscema, M. Capriotti, F. Bergami, C. Babiloni, P. Rossini, E. 

Grossi, “The implicit function as squashing time model: a novel 

parallel nonlinear EEG analysis technique distinguishing mild 

cognitive impairment and Alzheimer's disease subjects with high 

degree of accuracy,” Comput. Intell. Neurosci., 35021, 2007. 

[5] Y. Z. Jiang and J. Zhejiang, “Study on EEG power and coherence in 

patients with mild cognitive impairment during working memory 

task,” Univ. Sci. B., vol. 6, no. 12, pp. 1213-9, 2005. 

[6] O. Pogarell, S. J. Teipel, G. Juckel, L. Gootjes, T. Moller, K. Burger, 

G. Leinsinger, H. J. Moller, U. Hegerl, H. Hampel, “EEG coherence 

reflects regional corpus callosum area in Alzheimer's disease,” J. 

Neurol. Neurosurg. Psychiatry, vol. 76, no. 1, pp. 109-11, 2005. 

[7] P.M. Rossini, M. Buscema, M. Capriotti, E. Grossi, G. Rodriguez, C. 

Del Percio, and C. Babiloni, “Is it possible to automatically 

distinguish resting EEG data of normal elderly vs. mild cognitive 

impairment subjects with high degree of accuracy?,” Clin. 

Neurophysiol., vol. 119, no. 7, pp. 1534-45, 2008.  

[8] D. Abásolo, R. Hornero, P. Espino, and D. Alvarez, Poza, “Entropy 

analysis of the EEG background activity in Alzheimer's disease 

patients,” J. Physiol. Meas., vol. 27, no. 3, pp. 241-53, 2006.  

[9] R. Sneddon, W.R. Shankle, J. Hara, A. Rodriquez, D. Hoffman, U. 

Saha, “EEG detection of early Alzheimer's disease using 

psychophysical tasks,” Clin. EEG Neurosci., vol. 3, pp. 141-150, 

2005. 

[10] L. Lyras, N. J. Cairns, A. Jenner, P. Jenner, and B. Halliwell, “An 

assessment of oxidative damage to proteins, lipids, and DNA in brain 

from patients with Alzheimer's disease,” J.  Neurochem., vol. 68, no. 

5, pp. 2061-69, 1997. 

[11] C. Guo, A. L. Lawson, Q. Zhang, Y. Jiang, “Brain potentials 

distinguish new and studied objects during working memory,” Hum. 

Brain Map., vol. 29, pp. 441–452, 2008. 

[12] C. R. Clark, G. F. Egan, A. C. McFarlane, P. Morris, D. Weber, C. 

Sonkkilla, J. Marcina, H. J. Tochon-Danguy,  “Updating working 

memory for words: a PET activation study,” Hum Brain Map., vol. 9, 

no. 1, pp. 42-54, 2000. 

[13] C. Tomberg, “Cognitive N140 electrogenesis and concomitant 40 Hz 

synchronization in mid-dorsolateral prefrontal cortex (area 46) 

identified in non-averaged human brain potentials,” Neurosci. Lett., 

vol. 266, no. 2, pp. 141-144, 1999. 

[14] J. S. Johnson and B. A. Olshausen, “Timecourse of neural signatures 

of object recognition,” J. Vis., vol. 3, no. 7, pp. 499-512, 2003. 


