Designing a Component-Based Architecture for the
Modeling and Simulation of Nuclear Fuels and Reactors

[Extended Abstract]

Jay J. Billings John M. Hetrick Il Tim Bohn

Wael R. Elwasif IBM . IBM
Lee M. Hively 8401 Greensboro Drive Suite 5744 Nutwood Circle
David E. Bernholdt 120 Simi Valley, CA 93063

Oak Ridge National
Laboratory
P.O. Box 2008
Oak Ridge, TN 37831
{billingsjj,elwasifwr,hivelylm,
bernholdtde}@ornl.gov

ABSTRACT

Concerns over the environment and energy security have recently
prompted renewed interest in the U. S. in nuclear energy. Recog-
nizing this, the U. S. Dept. of Energy has launched an initiative to
revamp and modernize the role that modeling and simulation plays
in the development and operation of nuclear facilities. This Nu-
clear Energy Advanced Modeling and Simulation (NEAMS) pro-
gram represents a major investment in the development of new soft-
ware, with one or more large multi-scale multi-physics capabilities
in each of four technical areas associated with the nuclear fuel cy-
cle, as well as additional supporting developments. In conjunction
with this, we are designing a software architecture, computational
environment, and component framework to integrate the NEAMS
technical capabilities and make them more accessible to users. In
this report of work very much in progress, we lay out the “prob-
lem” we are addressing, describe the model-driven system design
approach we are using, and compare them with several large-scale
technical software initiatives from the past. We discuss how com-
ponent technology may be uniquely positioned to address the soft-
ware integration challenges of the NEAMS program, outline the
capabilities planned for the NEAMS computational environment
and framework, and describe some initial prototyping activities.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures; 1.6.3 [Sim-
ulation and Modeling]: Applications; J.2 [Computer Applica-
tions]: Physical Sciences And Engineering—Engineering

Submitted to the 2009 Workshop on Component-Based High-Performance
Computing (CBHPC 2009)

McLean, VA 22102
hetrick@us.ibm.com

tbohn@us.ibm.com

1. INTRODUCTION

Nuclear power accounts for approximately 20% of U. S. electric-
ity and offers a safe, reliable, and environmentally friendly alterna-
tive to the use of fossil fuels. This, along with increasing global
demand and security concerns associated with fossil fuels, has re-
sulted in a resurgence of both public and private interest in nuclear
energy in the U. S. Applications for 26 new reactors have been sub-
mitted to the U. S. Nuclear Regulatory Commission (NRC) since
2007 alone. This interest, however, comes after a lengthy period in
which the U. S. developed no new reactors. As a consequence, the
level of modeling and simulation used in the nuclear energy indus-
try had largely stagnated. In light of the recent increased interest,
the U. S. Department of Energy created the Nuclear Energy Ad-
vanced Modeling and Simulation (NEAMS) program to bring to
the nuclear energy industry the high-end modeling and simulation
(M&S) capabilities that are now the state of the art in other areas
of science and engineering. The goal is to use high-end M&S to
accelerate development and deployment of new technologies while
while increasing safety and efficiency and lowering costs.

The NEAMS program is organized around four technical areas
of the nuclear fuel cycle: fuels, reactors, separations and safe-
guards, and wasteforms. Additional cross-cutting activities support
these areas: fundamental methods and models (FMM), validation
and verification and uncertainty quantification, enabling computa-
tional technologies, and capabilities transfer. Each of the technical
areas, as well as FMM involve the development of one or more
large-scale modeling package, each at a scale comparable to that of
a large modern computational science project, such as those sup-
ported by the Dept. of Energy’s Scientific Discovery through Ad-
vanced Computing (SciDAC) initiative [2]. As part of the NEAMS
vision, an overarching software architecture and framework is also
being developed, with the goal of facilitating software integration
across the program and deployment to a broad spectrum of users
ranging from national laboratory and academic researchers to nu-
clear technology vendors, powerplant operators, and regulators.

This report describes the approach being taken to develop this
system (Sec. 2, and offers a snapshot of the progress to date, (roughly
9 months into the process) on the design of the NEAMS Computa-
tional Environment (Sec. 3) and the NEAMS Framework (Sec. 4).
The report closes with a discussion of related work (Sec. 5) and a
summary (Sec. 6).

NiCE Context Diagram

«I0_entity»
= NeafServicesList

«I0_entity»
«I0_entity» = SimInfo
lsimid

«I0_entity»

= App1d
«I0_entity» ench

= ObjectGeometry el

«genchy eceivedEReve”

«l0_entity» «send
=/ MeshProperties
«wsend

«I0_entity»
[BuildConfiguration
«I0_entity»
= AppSrcCode

«I0_entity»
= ResultList

«I0_entity»
= SourceCode

NEAMS Developer

«I0_entity»
] AssetMetadata

O_entity»

«
= catalogQuery

NiCE Use Case Diagram

WWO

Create Module

NEAMS Developer

reate Appllcatlon

gl |ates
Setup Model
NEAMS User T3
«initiategy

ecute Simulation

mputlng Platfnrm

«IO_entity»
= Asset

NEA| Catalu User
«initiages»
«initiatgs:

Submit Asset To Catalog

Perform Analysis

Search Catalog

Figure 1: A UML context diagram for NiCE showing the actors and information passed to and from the system (left), while a UML

use case diagram showing how the actors use the system (right).

2. DESIGN PROCESS

Our design process follows a use case driven, model based ap-
proach. The method is specifically designed to apply development
best practices to large and/or complex problems. The approach is
prescriptive and provides a rigorous approach to software and sys-
tems development. While aspects of this process will be familiar to
many who have experience developing large software systems, our
experience with many previous computational science and com-
puter science software development projects is that the design pro-
cess is often rather ad hoc, and not very systematic. Given the scale
of the NEAMS effort, our desire from the start was to pursue a more
systematic, rigorous, and carefully documented approach in order
to develop a design that is both scalable and sustainable in the long
term (10+ years).

The design process structures the work into a flow that provides
for consistency from problem identification, to problem analysis
and specification, to solution design, and finally solution imple-
mentation. The method takes a top down approach while consid-
ering bottom up constraints. There is a flow to the method from
outside to inside recognizing discrete levels of abstraction.

The system is initially presented as single “black box.” The work
initially focuses on understanding and specifying information pass-
ing in and out of the system. Once the black box flow of infor-
mation is understood, the internal workings of the system can be
explored. This internal view is called the “white box.”

2.1 Black Box

Bounding and scoping are represented by communicating the
context of the system (Fig. 1). Context isolates the system as a
single black box and describes who or what interacts with the sys-
tem (actors). Not only are a comprehensive set of actors identified,
but also what is exchanged between the actors and the system under
development.

Use cases describe the value that actors expect to get out of the
system. In other words, the use cases identify what the actors want
the system to do for them, or help them do. This identifies the be-
havior that the system must provide to be successful. At a glance
the identified use cases and their description provide a resume of

what the system will and will not do. Note that this does not indi-
cate the level of complexity, nor should it.

The specification of the black box, i.e. the creation and passage
of information to the system, is a description of the NEAMS Inte-
grated Computational Environment (NiCE).

2.2 White Box

After the black box, the design process focuses on how the sys-
tem will work. Scenarios derived from the use cases continue to
drive the process. These scenarios are explored using concrete ex-
amples from the NEAMS fuels and reactors teams. There is an m
to n relationship between the scenarios and the examples applied to
the scenarios. Each example contributes to fleshing out new aspects
of the scenarios. Thus, the solution grows and solidifies based on
the actual problems the system is being built to solve. This also
provides a rigorous and controlled approach to designing the sys-
tem.

The set of components that comprise the system are identified.
Interactions between instances of the components are specified for
each scenario and for each example. This yields the relationships
between the components and determines what the responsibilities
are for each component, which is fundamental for driving imple-
mentation.

Beyond simply identifying components and their interaction is
effort to recognize common situations that could be and should be
addressed in standard ways. For instance recognizing that applica-
tion modules can be dealt with in a uniform manner by a driver, or
having a standard way for modules written in different languages to
interoperate. These standard solutions are often called architectural
or design mechanisms and provide the foundations for extensible
architectures yielding robust implementations. These architectural
mechanisms, often themselves manifested as frameworks, are core
aspects of the NEAMS Framework.

In the following sections, we outline some of the major consid-
erations and design features that have emerged from our work so
far, as well as describing additional aspects of the design process.

3. NEAMS INTEGRATED COMPUTATIONAL

ENVIRONMENT

The NEAMS Integrated Computational Environment (NiCE) is
intended to allow flexible development and composition of a wide
range of simulations and applications. Anticipated NEAMS appli-
cations include integrated performance and safety codes (IPSCs)
for reactors, including fuel performance, core, and balance of plant
modeling; as well as fundamental methods and models (FMMs),
smaller length scale material modeling work, and atomistic to con-
tinuum multi-scale simulation, which provide understanding and
improve properties and models for the integrated codes. The envi-
ronment must also be flexible and extensible in order to accommo-
date new simulation capabilities that were not necessarily planned
when the environment was initially specified and constructed.

NiCE will support both the development of new software mod-
ules and the incorporation of existing software into a common envi-
ronment to promote interoperability. The Computational Environ-
ment will support the composition of simulation applications from
software modules external to the Environment and utilities internal
to the Environment, setup of models, execution of simulations on
those models, and analysis of the results. In addition, the Com-
putational Environment will support the NEAMS program’s needs
for verification, validation, and uncertainty quantification of both
individual modules, and composite applications. NiCE will pro-
vide Enabling Computational Technologies (ECTs) in the context
of a NEAMS Architecture and Framework. ECTs are capabilities
of widespread utility, which facilitate and simplify the development
and integration of software modules (though developers are free to
use alternatives of their own if desired). Types of utilities likely
to be of interest to NEAMS include, for example, unstructured
meshes, solvers, data format readers and translators, visualization
and analysis tools, and data management systems.

Use cases (right side of Fig. 1) have played a central role in “un-
derstanding” the NEAMS Computational Environment. Although
their names, and even their descriptions may sound generic to vir-
tually any simulation application, when developed carefully and in
detail, following best practices [6] provide a wealth of detail unique
to the target system and its users. Briefly, some of those key use
cases in our design work are:

Creating Modules and Applications. NiCE provides a way for
users and developers to work with modules and makes it possible to
create or edit them in a user-friendly way. In this case, “modules”
are components that provide some unit of functionality.

NiCE also provides tools for creating or editing applications.

Applications are a specific set of modules, combined with any needed

“infrastructure” modules from the framework, and with all connec-
tions between components specified.

Creating Models: Geometries, Meshes, and Materials. Cre-
ating input information, i.e. models of physical systems, can be a
difficult process. NiCE makes this task easier for users by provid-
ing a comprehensive set of geometry, meshing, and materials tools.
Additionally, NiCE will address the issue of coupling these three
types of information together.

Executing Simulations. A fundamental aspect of any compu-
tational environment is the ability to execute simulations. Simu-
lations represent the combination of an application with a specific
model. NiCE provides a platform-independent execution scheme
for compiling and running simulations on local or remote machines.

Performing Analyses. Many users will inevitably desire to per-
form some sort of analysis on the data produced by their simula-
tions. NiCE provides a set of built-in analysis operations to help
users with this task. NiCE also provides the ability to extend the

NEAMS Application Pattern Diagram

«PatternElement»

=]DomainStatePtrn

1
"
«PatternElement> “PatternElement> 1
e

J*_
«PatternElement>

= |SolverPtrn

Figure 2: A UML class diagram depicting a pattern for creating
applications.

analysis functionality by facilitating the creation of new analysis
operations.

4. NEAMS FRAMEWORK

The NEAMS Framework is a specification, middleware, and as-
sociated tools that allow the realization of NEAMS applications in
a flexible way through composition of independently-written mod-

ules and utilities in a common environment. Furthermore, the NEAMS

Framework will also classify and generally describe the types of
modules anticipated as part of the NEAMS program and, where
possible, will define interfaces representing the preferred way to
access the functionality of such capabilities.

4.1 Language Interoperability and Platform
Portability

Problems with language interoperability are common, especially
in the scientific community. The design of the NEAMS Framework
is language agnostic at a high level and drives down to language
specifics. The goal of this approach is to let users ignore language
issues; they can create modules in the language of their choice and
worry only about their research.

The NEAMS Framework takes a similar approach to platform
portability. The diverse nature of computing platforms across the
nuclear energy community requires a system that is nimble enough
to deal many different hardware platforms and operating systems.
This includes everything from laptops to petascale supercomputers,
and beyond. Considering these platform differences at the highest
level of the design process will insure that every user and developer
can perform meaningful research, regardless of their computing re-
sources.

4.2 Modules and Services

The NEAMS Framework makes no distinction between modules
and services at this point. While it may be the case that certain
“infrastructure” modules are created and delivered as part of the
framework, there is no difference between these modules and those
created by other developers. In fact, the infrastructure modules
could be replaced with other modules so long as the functionality
remained.

This view of modules is in contrast to many other large-scale
scientific frameworks. However, this approach will allow the func-
tionality of the NEAMS Framework to change in tandem to the re-
search efforts and insure that the NEAMS Framework is enabling
rather than constraining to developers.

Fig. 2 illustrates a pattern for creating applications from mod-
ules. In this pattern, the user controls a set of modules with a driver
or “controller” component and the modules store information in

FPIC Logical Architecture Diagram

—_—
«components
= IModule

| Controller
’ . Modile
1 G ntisizs (g, avgy, params | ParamTyps)
4, solve (params ; ParamType)
42 finalize (pararns : ParamType)

«comporents- «component: «component
=]ThermalModule | | =JMechanicsModule | | =]NeutronicsModule

1

o
0.1
o “components

«“component» 0.1| =]I0_Service

=]JHddmSolver

= II0_service
0.1 2 loacie ()
dhoet ()
#@put ()
0.1 {5, writeFie ()

Figure 3: A UML class diagram depicting the logical architec-
ture for the NEAMS Fuels Performance Integrated Code pro-
totype.

a “domain state” that is common between them, (note the one to
many relationship in the figure). Finally, the relationship of mod-
ules to other modules and math solvers is shown.

4.3 Software Prototypes

Part of the white box design effort of the NEAMS Framework
has centered on exploring physical models provided by the NEAMS
fuels and reactor teams. These examples were explored with proto-
type implementations of the NEAMS Framework. The prototypes
combine various elements of the ADVENTURE suite, [1], as de-
picted in Fig. 3.

Two prototype implementations exist, one in C and Python and
another created with the Common Component Architecture (CCA)
[5]. The C/Python implementation provides immediate access to a
large number of different packages for testing while the CCA im-
plementation helps in the exploration of language interoperability
issues, amongst other things.

5. COMPARISON WITH OTHER FRAME-
WORKS

Many other software frameworks exist in computational science
and engineering, though few at the scale envisioned for NEAMS.
Several among them have been influential in our thinking, and are
being carefully evaluated in the context of the NEAMS design.

The Common Component Architecture (CCA) is a component
architecture designed for high-performance computational science
and engineering, [5]. The CCA specification is maintained by the
CCA Forum, an open community organization, based largely in the
computer and computational science research community.

SALOME 5 is a generic platform for pre- and post-processing
for numerical simulation, [4]. Salome provides a link between
CAD modeling and simulation software. There are also compo-
nents available or being integrated into Salome for solid mechanics,
neutronics, and thermal-hydraulics, among others. It is developed
by a group in Electricité de France (EDF) R&D.

SWIM Integrated Plasma Simulator (SWIM IPS) is a component
framework aimed at “whole-device modeling” of fusion reactors,
[7]. The design of SWIM IPS is conceptually based on the CCA,
but the implementation is more narrowly tailored to the project’s
needs.

Simulation-based High-efficiency Advanced Reactor Prototyp-

ing (SHARP) is a suite of codes for fast reactor simulations. SHARP
is designed around a mesh and targets BG/P and Cray supercom-
puters, [8].

SCALE (Standardized Computer Analyses for Licensing Evalu-
ation) is a modular code system that was developed by Oak Ridge
National Laboratory for the NRC, [3]. System development has
been directed at problem-dependent cross-section processing and
analysis of criticality safety, shielding, depletion/decay, and reac-
tor physics problems. SCALE has been widely used for evaluation
of nuclear fuel facility and package designs.

6. SUMMARY

We have presented preliminary design work on the NEAMS In-
tegrated Computational Environment and the NEAMS Framework.
We have also described our design process and provided a list of
other frameworks which are relevent to this work.

7. ACKNOWLEDGMENTS

We are particularly grateful to Kevin Clarno, Scott Mosher, Sree-
kanth Pannala, Srdjan Simunovic, Tim Tautges, and John Turner
for many helpful discussions during the course of this work.

This work has been supported by the U. S. Department of En-
ergy, Offices of Nuclear Energy and by the ORNL Postmasters Re-
search Participation Program which is sponsored by ORNL and ad-
ministered jointly by ORNL and by the Oak Ridge Institute for Sci-
ence and Education (ORISE). ORNL is managed by UT-Battelle,
LLC for the U. S. Department of Energy under Contract No. DE-
ACO05-000R22725. ORISE is managed by Oak Ridge Associated
Universities for the U. S. Department of Energy under Contract
No. DE-AC05-000R22750.

8. REFERENCES

[1] The ADVENTURE project.
http://adventure.sys.t.u-tokyo.ac.jp/.

[2] SciDAC - DOE’s Scientific Discovery through Advanced
Computing. http://www.scidac.gov.

[3] SCALE: A Modular Code System for Performing

Standardized Computer Analyses for Licensing Evaluation.

ORNL/TM-2005/39, 1-111, November 2006.

The SALOME Platform, Summer 2009.

http://www.salome-platform.org.

[5] B. A. Allan, R. Armstrong, D. E. Bernholdt, F. Bertrand,

K. Chiu, T. L. Dahlgren, K. Damevski, W. R. Elwasif, T. G. W.

Epperly, M. Govindaraju, D. S. Katz, J. A. Kohl, M. Krishnan,

G. Kumfert, J. W. Larson, S. Lefantzi, M. J. Lewis, A. D.

Malony, L. C. Mclnnes, J. Nieplocha, B. Norris, S. G. Parker,

J. Ray, S. Shende, T. L. Windus, and S. Zhou. A component

architecture for high-performance scientific computing. Intl. J.

High-Perf. Computing Appl., 20(2):163-202, Summer 2006.

K. Bittner and I. Spence. Use Case Modeling.

Addison-Wesley, Boston, 2003.

[71 W.R. Elwasif, D. E. Bernholdt, L. A. Berry, and D. B.
Batchelor. Component framework for coupled integrated
fusion plasma simulation. In HPC-GECO/CompFrame 2007,
21-22 October, Montreal, Quebec, Canada, 21-22 October
2007.

[8] A. Siegal et al. Software Design of SHARP. Joint
International Topical Meeting on Mathematics &
Computational and Supercomputing in Nuclear Applications,
2007.

[4

—_

[6

—

