

Automated Behavior Computation for Software Analysis and Validation

Mark Pleszkoch, Richard Linger,

Stacy Prowell, and Kirk Sayre

Cyber Security and Information Intelligence Research

Oak Ridge National Laboratory, Oak Ridge, TN

lingerr, pleszkochmg, prowellsj, sayrekd@ornl.gov

Luanne Burns

Johns Hopkins Applied Physics Laboratory

Laurel, MD

luanne.burns@jhuapl.edu

Abstract
1

Software systems can exhibit massive numbers of exe-

cution paths, and even comprehensive testing can exer-

cise only a small fraction of these. It is no surprise that

systems experience errors and vulnerabilities in use

when many executions are untested. Computations

over the functional semantics of programs may offer a

potential solution. Structured programs are expressed

in a finite hierarchy of control structures, each of

which corresponds to a mathematical function or rela-

tion. A correctness theorem defines transformation of

these structures from procedural logic into non-

procedural, as-built specifications of behavior. These

computed specifications enumerate behavior for all

circumstances of use and cover the behavior space.

Automation of these computations affords a new means

for validating software functionality and security prop-

erties. This paper describes theory and implementa-

tion for loop behavior computation in particular, and

illustrates use of an automated behavior computation

system to validate a miniature looping program with

and without embedded malware.

1. Computing the behavior of software

Much effort has been devoted to technologies and

processes for software testing, resulting in substantial

improvements in capabilities. However, testing faces a

fundamental limitation: systems exhibit a massive num-

1 Notice: This manuscript has been authored by UT-Battelle, LLC,

under Contract No. DE-AC05-00OR22725 with the U.S. Depart-

ment of Energy. The United States Government retains and the pub-

lisher, by accepting the article for publication, acknowledges that the

United States Government retains a non-exclusive, paid-up, irrevo-

cable, world-wide license to publish or reproduce the published form

of this manuscript, or allow others to do so, for United States Gov-

ernment purposes. This submission was written by the author(s)

acting in their own independent capacity and not on behalf of UT-

Battelle, LLC, or its affiliates or successors.

ber of possible execution paths, of which even the best

testing can exercise only a small fraction. Errors and

vulnerabilities can persist in field use because most

executions are of necessity untested.

It is worth asking if knowledge of the full behavior

of software for verification and security analysis can be

obtained through means that do not depend on execu-

tion coverage.

Recent developments in software behavior compu-

tation [6,8] based on denotational semantics [1,7,10]

suggest that the answer may be yes. Computer pro-

grams are mathematical artifacts subject to mathemati-

cal analysis. In particular, the single-entry, single-exit

control structures of sequential structured programs,

namely, sequence, ifthenelse, whiledo, and their vari-

ants, correspond to mathematical functions or relations

that define mappings of domains to ranges or inputs to

outputs. Structured programs define an algebraic hier-

archy of these structures. Leaf node control structures

in the hierarchy produce local functional effects that

can be propagated in procedure-free form to containing

structures to determine their local functional effects,

continuing in this manner until the overall function of a

program has been derived.

A correctness theorem [7] defines function-

equivalent transformations from fundamental procedur-

al control structures into functional forms which repre-

sent their as-built specifications, as follows, for control

structure P, operations on data g and h, predicate p, and

program function f:

sequence:

The function of a sequence control structure

 P: g; h

is computed by function composition

 f = [P] = [g; h] = [h] o [g]

where square brackets denote the behavior of

the enclosed operations and “o” represents the

composition operator.

ifthenelse:

The function of an ifthenelse

 P: if p then g else h endif

is computed by case analysis of true and false

branches

 f = [P] = [if p then g else h endif]

 = ([p] = true [g] | [p] = false [h])

where “|” means the union of disjoint cases.

 whiledo:

The function of a terminating whiledo

 P: while p do g enddo

is computed through function composition and

case analysis in a recursive equation based on

the equivalence of an iteration control struc-

ture and an iteration-free control structure (an

ifthen structure):

 f = [P] = [while p do g enddo]

 = [if p then g; while p do g enddo endif]

 = [if p then g; f endif]

Computation of loop behavior is subject to theoretical

constraints as expressed in the Halting Problem. In

addition, while it always produces a correct result, this

recursive functional form is not readily understandable,

and must be augmented with an alternate approach. A

detailed description of loop behavior computation is

provided in the following section.

The theoretical foundations defined by the correct-

ness theorem have been applied in an emerging tech-

nology known as Function Extraction (FX), and have

been automated in a behavior computation system that

has been successfully applied to malware analysis

[11,12]. The FX system computes behavior for Intel

assembly language programs based on a repository of

functional semantics for X86 instructions. Behavior

computation at the assembly level, downstream from

compiler ambiguities, permits approaching the ground

truth of operations on the processor. In addition, the

behavior computation system employs a repository of

specification units known as semantic reduction theo-

rems (SRTs) that express computed behavior in func-

tion-equivalent expressions at higher levels of abstrac-

tion. SRTs are very general and can be defined once

and for all. For example, a repository of SRTs for fi-

nite arithmetic operations need never be changed unless

the processor architecture is modified.

The process of behavior computation proceeds

through four principal steps:

1. Transform input program instructions into

functional semantics form.

2. Transform the input program into structured

form expressed in an algebraic hierarchy of

fundamental control structures.

3. Compute and propagate the behavior of each

control structure beginning with leaf structures.

4. Apply semantic reduction theorems to simplify

and abstract computed behavior at each step.

Computed behavior is expressed in sets of disjoint,

non-procedural conditional concurrent assignments

(CCAs) that define conditions under which assignments

from domain to range occur. For example, behavior of

the simple sequence

a := b + c

b := b – a

a := b – a

computed by simple composition, can be expressed as

 true -> a := -b - 2c

 b := -c

where the true predicate indicates the behavior always

occurs, and the assignments are concurrent mappings

from initial state into final state.

2. Loop behavior computation

As noted, loop behavior computation is subject to

theoretical constraints. However, research has resulted

in means to make the effects of these constraints arbi-

trarily small. In illustration, consider the loop compu-

tation process depicted in five steps in Figure 1.

At a point where behavior is to be computed for a

loop, note that the loop body will be represented by a

non-procedural function previously computed based on

the structures and operations it contains. At step 1, the

loop is decomposed into a control slice loop that in-

cludes all operations associated with the iteration and

termination of the loop, and auxiliary slice loops, one

for each state item that is assigned new values in the

loop. At this point, the functional effect of the original

loop is equivalent to the union of the functional effects

of the sliced loops.

At step 2, the control slice loop is analyzed by se-

mantic reduction theorems (SRTs) to determine how

the loop iterates and terminates. A class of SRTs em-

ployed in loop computation embodies iteration strate-

gies such as count up and terminate, count down and

terminate, terminate on condition, etc. As noted above,

SRTs are very general and broadly applicable units of

specification. For example, an SRT that embodies a

count down strategy will apply to count down behavior

that was computed from procedural logic, no matter

what particular implementation of counting down was

employed. This is an important characteristic based on

the property of “one function, many rules.” For exam-

ple, there are many ways to swap two variables in pro-

cedural logic, but, side effects aside, only one function

required to define them all, namely, “swap.” The net

effect of Step 2 is a derivation of the course of values

employed by the control slice to manage successive

iterations and eventual termination of the loop. Step 3

applies the course of values determined in step 2 to-

gether with other SRTs to produce computed behavior

for the auxiliary slices whose iterative properties are

now known. Step 4 combines the functional behaviors

of the sliced loops to arrive at the composite behavior

of the original loop. Finally, step 5 employs additional

SRTs that may be applicable to reduce the computed

loop behavior to simpler form.

Figure 1. The loop behavior computation process

 Figure 2 depicts a miniature example of loop com-

putation based on the process described above. Step 1

slices the loop into control and auxiliary slice loops as

shown. At step 2, the control slice function and associ-

ated course of values are determined by applying a se-

mantic reduction theorem that embodies count down

iteration. Step 3 applies the course of values to the

auxiliary slice loop to determine its function. Step 4

combines the control and auxiliary slice functions into a

single conditional concurrent assignment specification.

Finally, step 5 applies other SRTs to reduce the behav-

ior to simpler terms. Note the box in the lower right of

the figure that illustrates the effect of an initialization

assignment on the computed behavior of loop. The

initialization creates a sequence structure that can be

composed to arrive at a simpler expression of behavior.

Initialized loop behavior is often simpler than loop be-

havior alone.

3. A loop behavior computation example

Figure 3 shows a small subroutine in x86 assembly

language that loops through elements in a memory ar-

ray and counts the number of strictly positive elements.

The byte before the start of the array is pointed to by

the ESI register, and the ECX register is used to index

into a particular array element. The computation starts

at the end of the array and works backwards, so the

ECX register counts downward. The EDX register is

initialized to zero outside the loop, and is used to ac-

cumulate the number of strictly positive array elements.

Internal to the loop body, the EAX register is loaded

with the array element, and then the EBX register is set

to 1 if the EAX value is strictly positive and set to 0

otherwise, and then the EBX register is added into the

EDX register.

Figure 3. A miniature loop program

start:

 xor EDX, EDX

top:

 dec ECX

 jz done

 xor EBX, EBX

 mov EAX, [ESI+ECX]

 cmp EAX, 0

 setg BL

 add EDX, EBX

 jmp top

done:

 ret

Figure 2. A loop behavior computation example

The structured version of this program produced by

the FX system is shown below, expressed in terms of

sequence, ifthenelse, and whiledo control structures:

 xor DWORD EDX, DWORD EDX

 label = 0x00401002

 WHILE

 label equal 0x00401002

 DO

 dec DWORD ECX

 IF

 jz BYTE 15

 THEN

 ret

 label = exit

 ELSE

 xor DWORD EBX,DWORD EBX

 mov DWORD EAX,DWORD

 [0+(ESI+(1*ECX))]

 cmp DWORD EAX, BYTE 0

 setg BYTE BL

 add DWORD EDX,DWORD EBX

 jmp BYTE -18

 label = 0x00401002

 END IF

 END WHILE

The control slice for this loop program is as follows. It

simply counts down the value in the ECX register:

 WHILE

 label equal 0x00401002

 DO

 dec DWORD ECX

 IF

 jz BYTE 15

 THEN

 ret

 label = exit

 ELSE

 label = 0x00401002

 END IF

 END WHILE

There are three pre-defined SRTs associated with

recognizing the functional behavior of this control

slice. First, a domain SRT states this loop always ter-

minates regardless of the initial value of ECX. This is

true because of the wrap-around nature of finite arith-

metic. If the initial value of ECX is zero, then the loop

will iterate 2^32 times. Second, there is a function SRT

that states that the final value of ECX after the loop is

0. Finally, there is a course-of-values SRT that states

that the values ECX takes on during the course of loop

iterations is downto_wrap_32(ECX,1), where down_

to_wrap_32 is the 32-bit finite arithmetic wrapping

version of the downto() list micro-operation illustrated

in Figure 2.

The auxiliary slices are different than might be ex-

pected from looking at the code. Since the loop body

code computes EAX from ECX, then EBX from EAX,

and then EDX from EBX (and the prior EDX), it might

seem as though the auxiliary slices should work in the

same way. However, in loop behavior computation, the

slicing is based on the previously computed functional

behavior of the loop body, not the code of the loop

body. Thus, since the value of EBX is computed from

the newly assigned value of EAX which was computed

from ECX, from the point of view of functional behav-

ior, the auxiliary slice for EBX depends only on the

control slice featuring only ECX. Similarly, the auxil-

iary slices for all the other loop variables (EDX, EAX,

flags) only depend on the control slice.

Two auxiliary slice function SRTs are used to com-

pute the remainder of the loop behavior from the con-

trol slice course-of-values. The first such SRT applies

to all the loop variables except EDX, and states that if

an auxiliary slice re-computes the auxiliary loop varia-

ble directly from the control slice every time, then its

final value only depends on the last iteration of the

loop, or on its original value if the loop never iterates.

Thus, the final value of EAX is given by the following

behavior expression computed by the FX system, ex-

pressed as a conditional concurrent assignment, where

M represents memory (“|” means the union of disjoint

cases):

[(ECX == 1) ->

 EAX := EAX

| (ECX != 1) ->

 EAX := M[ESI +d 1]

]

Similarly, the final value of EBX is given by the fol-

lowing expression computed by the FX system:

[(ECX == 1) ->

 EBX := EBX

| (ECX != 1) && (M[ESI +d 1] >s 0) ->

 EBX := 1

| (ECX != 1) && (M[ESI +d 1] <=s 0)->

 EBX := 0

]

In the EBX behavior, the first case (ECX == 1) oc-

curs when the loop body never executes, and EBX is

left unchanged. The second case occurs when the loop

body executes, and the last array element that it checks

is strictly positive.

The third case occurs when the loop body executes,

and the last array element that it checks is zero or nega-

tive. The “+d” notation reflects 32-bit wrap-around

addition, and the “>s” and “<=s” notations reflect a

signed comparison instead of an unsigned comparison.

The second auxiliary slice function SRT applies on-

ly to the EDX auxiliary slice, which is recognized as

accumulating the sum of an expression across the loop

iterations, examining each array element in turn. For

EDX, the final value (for the initialized loop) is given

by:

[EDX :=

 sum of

 (x -> is_pos_signed_32(x))

 over

 M[(ESI +d 1)..(ESI +d ECX –d 1)]

]

Next, Figure 4 depicts an altered version of the

loop, where a malicious code exploit has been deliber-

ately added. Here, a check has been inserted into the

loop body that looks for a -83 value in the memory

array, and if that element value is found, the direction

flag DF is set so as to change the direction of any future

Intel string operations, which will likely result in a

buffer overflow.

Figure 4. Loop program with malicious code

The FX system computes the behavior of this loop

using slicing as usual. The control slice is exactly the

same as before, and the behavior for ECX is likewise

identical. The computed behavior for EAX is different,

reflecting the fact it is used as for temporary storage in

the malicious exploit:

[(ECX == 1) ->

 EAX := EAX

| (ECX != 1) ->

 EAX := M[ESI +d 1] +d 83

]

start:

 xor EDX, EDX

top:

 dec ECX

 jz done

 xor EBX, EBX

 mov EAX, [ESI+ECX]

 cmp EAX, 0

 setg BL

 add EDX, EBX

 add EAX, 83

 jnz top

 std

 jmp top

done:

 ret

The new behavior for EBX and EDX is the same as

in the original code, because the auxiliary slices are the

same. Since the EDX register holds the final answer of

the computation, testing that only checks the value of

EDX will not find the malicious exploit.

However, this time, the FX computation shows ad-

ditional behavior for a new auxiliary slice for the DF

flag which reflects the fact that it is set under certain

conditions. If there is an auxiliary slice function SRT

to specifically recognize these conditions, then the add-

ed behavior will be shown as follows:

[exists

 (x -> (x == -83))

 over

 M[(ESI +d 1)..(ESI +d ECX –d 1)]

 -> DF := true

| not (exists

 (x -> (x == -83))

 over

 M[(ESI +d 1)..(ESI +d ECX –d 1)])

 -> DF := DF

]

Otherwise, if there is no SRT to specifically recog-

nize these conditions, as would typically be the case,

then the behavior of DF in the conditional concurrent

assignment statement will be expressed in terms of re-

cursively defined generic loop behavior functions as

computed through direct application of the correctness

theorem. However, even in this situation, it is clear that

undesired code has been inserted, as there is no reason

to set the DF flag under any circumstances.

This is a key point. As depicted in Figure 5, testing

can cover only a fraction of the execution space, but

behavior computation covers all of the behavior space.

That is, the disjoint conditional concurrent assignments

produced by behavior computation represent all possi-

ble program behaviors, whether correct or incorrect,

legitimate or malicious.

With respect to this example, it is unlikely that a

test case would be created to execute the program un-

der the condition that a -83 value was present in the

array. For an intruder who inserted the malicious code,

however, this is the attack vector for achieving desired

objectives. But for the FX system, this is just another

case of computed behavior that will be automatically

produced along with the others.

This example illustrates the potential power of be-

havior computation to help verify correct functionality

and security properties, beyond what is practically

achievable with testing. Of course, other forms of test-

ing will always be required, for example, integration

and performance testing, but computed behavior may

help to improve the speed and completeness of verifica-

tion, particularly at unit and subsystem levels.

Figure 5. Testing and behavior computation

4. Computed exploration of software

The behavior computation process for a program

requires deriving the behavior of every control struc-

ture of which it is comprised. This rich body of highly

structured behavioral sub-specifications associated with

control structures can be applied to exploration of code

in behavioral terms [2,3]. Such exploration provides

fast insight into how particular behaviors are produced.

In particular, three methods for applying computed

behavior to program exploration have been investigated

in the FXplorer application, as follows:

 BehaviorCase or Path Quest

 BehaviorHere or Come Here

 BehaviorPath or Connect the Dots

 By default, FX displays the whole program behavior

database. Using this display, a user might decide that

one or more of the behaviors looks suspicious or erro-

neous. The user might want to know which code state-

ments and their accumulating behaviors contribute to

the case in question.

 BehaviorCase, FXplorer’s Path Quest function,

starts with a user-selected case in the behavior database

of a program. It determines and displays the composi-

tions of all the accumulating behavior along all the

code paths that produce that case. All other code and

behavior is eliminated. Thus, a programmer can deter-

mine what part of the original program is responsible

for a given result. Figure 6 shows an example of the

Path Quest function and accumulating behavior.

 BehaviorHere, or FXplorer’s Come Here func-

tion, starts with a user-selected statement in the pro-

gram. It determines and displays the compositions of all

the accumulating behaviors along all possible code

paths to that statement. Come Here allows a program-

mer to identify a particular point in a program and see

all the paths and accumulating behaviors leading to that

point. Figure 7 shows a Come Here function performed

on statement 6 of Figure 6.

Figure 6. BehaviorCase or Path Quest exploration

 BehaviorPath, or Connect the Dots, starts with a

user-selected code path through the program. It deter-

mines and displays all the compositions of the accumu-

lating behavior along that path. By connecting the dots,

a programmer can examine a particular path through

the program to see the accumulating and final behavior

it causes. Figure 8 shows user controlled connect-the-

dots exploration.

Figure 7. BehaviorHere or Come Here exploration

 These three functions provide a unique way of un-

derstanding a program. They allow direct answers to

common programmer questions such as: "Where does

this result come from?" (BehaviorCase), "What hap-

pens if this path is executed?" (BehaviorPath), and

"How does this program get here?" (BehaviorHere).

The ability to answer these questions in full without

doing a line-by-line analysis improves a programmer’s

ability to understand program behavior, to verify that

the results are correct, and to validate the results against

documentation of specifications or designs.

 Capabilities such as these can provide programmers

and analysts with access to computed behavior in the

context of immediate needs for program understanding,

verification, debugging, modification, or evolution.

Figure 8. BehaviorPath or Connect-the-Dots exploration

5. Comparison with other work

The technology of behavior computation can be

contrasted with symbolic execution and abstract inter-

pretation as follows:

5.1 Symbolic execution

Symbolic execution [5] is an approach originating in

the 1970’s to understand what a program does on gen-

eralized input data expressed using symbolic variables.

Typically, symbolic execution only traces through a

single possible execution path of a program. Recently,

symbolic execution has been generalized to operate

over a limited subset of related execution paths, e.g.,

paths that differ only in the number of times a given

loop is iterated [9]. Behavior computation significantly

generalizes symbolic execution by expressing the com-

plete behavior of a program over all possible paths as a

static, symbolic expression. This is possible because

behavior computation uses automated program structur-

ing to recover the underlying hierarchical structure of a

program, so that all its control structures, which em-

body all its paths, can be analyzed in a systematic man-

ner. In behavior computation, a program is examined

in a bottom-up process, first analyzing the leaf-node

control structures, then combining those analyses at

higher and higher levels to understand the larger pro-

gram. In symbolic execution, paths are examined start-

ing from the entry point of the program, and it is a dif-

ficult, heuristic effort to combine the results from dif-

ferent paths. Programs can exhibit massive numbers of

possible execution paths, but are always comprised of a

finite number of control structures. Behavior computa-

tion is a finite process that deals with control structures,

not paths, and is thus guaranteed to terminate.

5.2 Abstract interpretation

Abstract interpretation [4] is an application of denota-

tional semantics in which a scaled-down, computation-

ally tractable semantic domain is used to rigorously

approximate a fuller, mathematically defined but com-

putationally intractable semantic domain. In cases

where the scaled-down domain of abstract interpreta-

tion is still suitable for an application, the extraction

algorithms of abstract interpretation are generally more

efficient than behavior computation. However, given a

difficult input program, if it turns out that the scaled-

down domain is not suitable, the abstract interpretation

algorithms typically return no information (i.e., the

bottom element of the domain lattice). In contrast, be-

havior computation will always return a correct sym-

bolic expression of full program behavior, although

perhaps not is simplest possible terms.

 6. Next steps in behavior computation

Oak Ridge National Laboratory (ORNL) is apply-

ing behavior computation to smart grid components,

with initial focus on embedded software in smart me-

ters. The computations are based on the functional

semantics of instructions for the MSP430 processor,

plus functional definitions for meter components under

software control. The objective of this effort is to ana-

lyze computed behavior both to determine if functional-

ity is correct and to help reveal any security vulnerabili-

ties that may be present.

Research and development in software behavior

computation will continue at ORNL to exploit this new

technology in other areas, such as software develop-

ment, test and evaluation, reverse engineering, and anti-

tamper analysis. FX algorithms are being migrated to

high performance computing (HPC) environments

available at ORNL.

Application of the technology to analysis of soft-

ware security properties is a focus area [13]. Malware

exhibits a fundamental vulnerability: it must execute on

the target computer in order to achieve its objectives,

and the executable code unavoidably embodies com-

putable behavior, just as does any other code. FX

computes the behavior of all of it, whether legitimate or

malicious. In so doing, it reveals the presence of any

malicious content, for example, sleeper code or logic

bombs, that may be hidden in legitimate code.

7. References

[1] Allison, L., A Practical Introduction to Denotational

Semantics, Cambridge Computer Science Texts 23,

Cambridge University Press, 1986.

[2] Bartholomew, R., L. Burns, T. Daly, R. Linger, and S.

Prowell, “Function Extraction: Automated Behavior

Computation for Aerospace Software Verification and

Certification,” Proceedings of 2007 AIAA Aerospace

Conference, Monterey, CA, May, 2007, Vol. 3,

pp.2145-2153.

[3] Burns, L. and T. Daly, “FXplorer: Exploration of Com-

puted Software Behavior: A New Approach to Under-

standing and Verification,” Proceedings of Hawaii In-

ternational Conference on System Sciences (HICSS-42),

IEEE Computer Society Press, Los Alimitos, CA, 2009.

[4] Cousot, P. and Cousot, R., “Abstract interpretation: a

unified lattice model for static analysis of programs by

construction or approximation of fixpoints”, Proceed-

ings of 4th Conference on the Principles of Program-

ming Languages (POPL), Los Angeles, CA, 1977, pp.

238-252.

[5] King, James C., "Symbolic execution and program test-

ing", Comm. of the ACM, v. 19, n. 7, 1976, pp. 385-

394.

[6] Linger, R., . Pleszkoch, and R. Hevner, “Introducing

Function Extraction into Software Testing,” The Data

Base for Advances in Information Systems: Special Is-

sue on Software Systems Testing, ACM SIGMIS, New

York, NY, 2008.

[7] Linger, R., H. Mills, and B. Witt, Structured Program-

ming: Theory and Practice, Addison-Wesley, Reading,

MS, 1979.

[8] Pleszkoch, M. and R. Linger, “Improving Network Sys-

tem Security with Function Extraction Technology for

Automated Calculation of Program Behavior.” Proceed-

ings of Hawaii International Conference on System Sci-

ences (HICSS-37). Hawaii, IEEE Computer Society

Press, Los Alimitos, CA, 2004.

[9] Prateek Saxena, Pongsin Poosankam, Stephen McCa-

mant, and Dawn Song, "Loop-Extended Symbolic Exe-

cution on Binary Programs", Proceedings of the

ACM/SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA), July 2009.

[10] Prowell, S., C. Trammell, R. Linger, and J. Poore,

Cleanroom Software Engineering: Technology and Prac-

tice, Addison Wesley, Reading, MA, 1999.

[11] Prowell, S., M. Pleszkoch, and C. Cohen, “Applying

Function Extraction (FX) Techniques to Reverse Engi-

neer Virtual Machines,” CERT 2009 Research Report

(R. Linger, Ed.), Software Engineering Institute, Carne-

gie Mellon University, Pittsburgh, PA, 2010.

[12] Sayre, K., M. Pleszkoch, T. Daly, R. Linger, and S.

Prowell, “Function Extraction for Malicious Code Anal-

ysis,” CERT 2009 Research Report (R. Linger, Ed.),

Software Engineering Institute, Carnegie Mellon Uni-

versity, Pittsburgh, PA, 2010.

[13] Walton, G., T. Longstaff, and R. Linger, Technology

Foundations for Computational Evaluation of Security

Attributes, Technical Report CMU/SEI-2006-TR-021,

Software Engineering Institute, Carnegie Mellon Uni-

versity, Pittsburgh, PA, 2006.

http://www.cert.org/archive/pdf/FXplorerHICSS.pdf
http://www.cert.org/archive/pdf/FXplorerHICSS.pdf
http://www.cert.org/archive/pdf/FXplorerHICSS.pdf

