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Abstract
1
 

Software systems can exhibit massive numbers of exe-

cution paths, and even comprehensive testing can exer-

cise only a small fraction of these. It is no surprise that 

systems experience errors and vulnerabilities in use 

when many executions are untested.  Computations 

over the functional semantics of programs may offer a 

potential solution.  Structured programs are expressed 

in a finite hierarchy of control structures, each of 

which corresponds to a mathematical function or rela-

tion. A correctness theorem defines transformation of 

these structures from procedural logic into non-

procedural, as-built specifications of behavior.  These 

computed specifications enumerate behavior for all 

circumstances of use and cover the behavior space.  

Automation of these computations affords a new means 

for validating software functionality and security prop-

erties.  This paper describes theory and implementa-

tion for loop behavior computation in particular, and 

illustrates use of an automated behavior computation 

system to validate a miniature looping program with 

and without embedded malware. 

 

 

1.  Computing the behavior of software 

 
Much effort has been devoted to technologies and 

processes for software testing, resulting in substantial 

improvements in capabilities.  However, testing faces a 

fundamental limitation: systems exhibit a massive num-
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ber of possible execution paths, of which even the best 

testing can exercise only a small fraction.  Errors and 

vulnerabilities can persist in field use because most 

executions are of necessity untested.   

It is worth asking if knowledge of the full behavior 

of software for verification and security analysis can be 

obtained through means that do not depend on execu-

tion coverage. 

Recent developments in software behavior compu-

tation [6,8] based on denotational semantics [1,7,10] 

suggest that the answer may be yes.  Computer pro-

grams are mathematical artifacts subject to mathemati-

cal analysis.  In particular, the single-entry, single-exit 

control structures of sequential structured programs, 

namely, sequence, ifthenelse, whiledo, and their vari-

ants, correspond to mathematical functions or relations 

that define mappings of domains to ranges or inputs to 

outputs.  Structured programs define an algebraic hier-

archy of these structures.  Leaf node control structures 

in the hierarchy produce local functional effects that 

can be propagated in procedure-free form to containing 

structures to determine their local functional effects, 

continuing in this manner until the overall function of a 

program has been derived. 

A correctness theorem [7] defines function-

equivalent transformations from fundamental procedur-

al control structures into functional forms which repre-

sent their as-built specifications, as follows, for control 

structure P, operations on data g and h, predicate p, and 

program function f: 

 

sequence: 

The function of a sequence control structure   

  P: g; h 

is computed by function composition 

  f = [P] = [g; h] = [h] o [g] 

where square brackets denote the behavior of 

the enclosed operations and “o” represents the 

composition operator.  

 

 

 



  

 

ifthenelse: 

The function of an ifthenelse  

    P: if p then g else h endif 

is computed by case analysis of true and false 

branches  

    f = [P] = [if p then g else h endif] 

      = ([p] = true  [g] | [p] = false  [h]) 

where “|” means the union of disjoint cases.  

      

      whiledo: 

The function of a terminating whiledo 

    P: while p do g enddo 

is computed through function composition and 

case analysis in a recursive equation based on 

the equivalence of an iteration control struc-

ture and an iteration-free control structure (an 

ifthen structure): 

    f = [P] = [while p do g enddo] 

      = [if p then g; while p do g enddo endif] 

      = [if p then g; f endif] 

 

Computation of loop behavior is subject to theoretical 

constraints as expressed in the Halting Problem.  In 

addition, while it always produces a correct result, this 

recursive functional form is not readily understandable, 

and must be augmented with an alternate approach.  A 

detailed description of loop behavior computation is 

provided in the following section.   

The theoretical foundations defined by the correct-

ness theorem have been applied in an emerging tech-

nology known as Function Extraction (FX), and have 

been automated in a behavior computation system that 

has been successfully applied to malware analysis 

[11,12].  The FX system computes behavior for Intel 

assembly language programs based on a repository of 

functional semantics for X86 instructions. Behavior 

computation at the assembly level, downstream from 

compiler ambiguities, permits approaching the ground 

truth of operations on the processor.  In addition, the 

behavior computation system employs a repository of 

specification units known as semantic reduction theo-

rems (SRTs) that express computed behavior in func-

tion-equivalent expressions at higher levels of abstrac-

tion.  SRTs are very general and can be defined once 

and for all.  For example, a repository of SRTs for fi-

nite arithmetic operations need never be changed unless 

the processor architecture is modified.  

The process of behavior computation proceeds 

through four principal steps: 

1. Transform input program instructions into 

functional semantics form.   

2. Transform the input program into structured 

form expressed in an algebraic hierarchy of 

fundamental control structures. 

3. Compute and propagate the behavior of each 

control structure beginning with leaf structures. 

4. Apply semantic reduction theorems to simplify 

and abstract computed behavior at each step. 

Computed behavior is expressed in sets of disjoint, 

non-procedural conditional concurrent assignments 

(CCAs) that define conditions under which assignments 

from domain to range occur.  For example, behavior of 

the simple sequence 

a := b + c 

b := b – a 

a := b – a  

computed by simple composition, can be expressed as 

      true ->  a := -b - 2c  

     b := -c 

where the true predicate indicates the behavior always 

occurs, and the assignments are concurrent mappings 

from initial state into final state.   

2. Loop behavior computation 

As noted, loop behavior computation is subject to 

theoretical constraints.  However, research has resulted 

in means to make the effects of these constraints arbi-

trarily small.  In illustration, consider the loop compu-

tation process depicted in five steps in Figure 1. 

At a point where behavior is to be computed for a 

loop, note that the loop body will be represented by a 

non-procedural function previously computed based on 

the structures and operations it contains.  At step 1, the 

loop is decomposed into a control slice loop that in-

cludes all operations associated with the iteration and 

termination of the loop, and auxiliary slice loops, one 

for each state item that is assigned new values in the 

loop.  At this point, the functional effect of the original 

loop is equivalent to the union of the functional effects 

of the sliced loops.   

At step 2, the control slice loop is analyzed by se-

mantic reduction theorems (SRTs) to determine how 

the loop iterates and terminates.  A class of SRTs em-

ployed in loop computation embodies iteration strate-

gies such as count up and terminate, count down and 

terminate, terminate on condition, etc.  As noted above, 

SRTs are very general and broadly applicable units of 

specification.  For example, an SRT that embodies a 

count down strategy will apply to count down behavior 

that was computed from procedural logic, no matter 

what particular implementation of counting down was 

employed.  This is an important characteristic based on 

the property of “one function, many rules.”  For exam-

ple, there are many ways to swap two variables in pro-

cedural logic, but, side effects aside, only one function 

required to define them all, namely, “swap.”  The net 

effect of Step 2 is a derivation of the course of values 

employed by the control slice to manage successive 



  

 

iterations and eventual termination of the loop.  Step 3 

applies the course of values determined in step 2 to-

gether with other SRTs to produce computed behavior 

for the auxiliary slices whose iterative properties are 

now known. Step 4 combines the functional behaviors 

of the sliced loops to arrive at the composite behavior 

of the original loop.  Finally, step 5 employs additional 

SRTs that may be applicable to reduce the computed 

loop behavior to simpler form.  

 

Figure 1. The loop behavior computation process

  Figure 2 depicts a miniature example of loop com-

putation based on the process described above.  Step 1 

slices the loop into control and auxiliary slice loops as 

shown.  At step 2, the control slice function and associ-

ated course of values are determined by applying a se-

mantic reduction theorem that embodies count down 

iteration.  Step 3 applies the course of values to the 

auxiliary slice loop to determine its function.  Step 4 

combines the control and auxiliary slice functions into a 

single conditional concurrent assignment specification.  

Finally, step 5 applies other SRTs to reduce the behav-

ior to simpler terms.  Note the box in the lower right of 

the figure that illustrates the effect of an initialization 

assignment on the computed behavior of loop.  The 

initialization creates a sequence structure that can be 

composed to arrive at a simpler expression of behavior.  

Initialized loop behavior is often simpler than loop be-

havior alone.   

3. A loop behavior computation example 

Figure 3 shows a small subroutine in x86 assembly 

language that loops through elements in a memory ar-

ray and counts the number of strictly positive elements.  

The byte before the start of the array is pointed to by 

the ESI register, and the ECX register is used to index 

into a particular array element.  The computation starts 

at the end of the array and works backwards, so the 

ECX register counts downward.  The EDX register is 

initialized to zero outside the loop, and is used to ac-

cumulate the number of strictly positive array elements.  

Internal to the loop body, the EAX register is loaded 

with the array element, and then the EBX register is set 

to 1 if the EAX value is strictly positive and set to 0 

otherwise, and then the EBX register is added into the 

EDX register.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. A miniature loop program 

 

start: 

        xor EDX, EDX 

top: 

        dec ECX 

        jz done 

        xor EBX, EBX 

        mov EAX, [ESI+ECX] 

        cmp EAX, 0 

        setg BL 

        add EDX, EBX 

        jmp top 

done: 

        ret 

 



  

 

 

Figure 2. A loop behavior computation example 

The structured version of this program produced by 

the FX system is shown below, expressed in terms of 

sequence, ifthenelse, and whiledo control structures: 
 

   xor DWORD EDX, DWORD EDX 

   label = 0x00401002 

   WHILE 

      label equal 0x00401002 

   DO 

      dec DWORD ECX 

      IF 

         jz BYTE 15 

      THEN 

         ret 

         label = exit 

      ELSE 

         xor DWORD EBX,DWORD EBX 

         mov DWORD EAX,DWORD  

             [0+(ESI+(1*ECX))] 

         cmp DWORD EAX, BYTE 0 

         setg BYTE BL 

         add DWORD EDX,DWORD EBX 

         jmp BYTE -18 

         label = 0x00401002 

      END IF 

   END WHILE 

The control slice for this loop program is as follows.  It 

simply counts down the value in the ECX register:   
 
   WHILE 

      label equal 0x00401002 

   DO 

      dec DWORD ECX 

      IF 

         jz BYTE 15 

      THEN 

         ret 

         label = exit 

      ELSE 

         label = 0x00401002 

      END IF 

   END WHILE 

 

There are three pre-defined SRTs associated with 

recognizing the functional behavior of this control 

slice.  First, a domain SRT states this loop always ter-

minates regardless of the initial value of ECX.  This is 

true because of the wrap-around nature of finite arith-

metic.  If the initial value of ECX is zero, then the loop 

will iterate 2^32 times.  Second, there is a function SRT 

that states that the final value of ECX after the loop is 

0.  Finally, there is a course-of-values SRT that states 

that the values ECX takes on during the course of loop 



  

 

iterations is downto_wrap_32(ECX,1), where down_ 

to_wrap_32 is the 32-bit finite arithmetic wrapping 

version of the downto() list micro-operation illustrated 

in Figure 2. 

The auxiliary slices are different than might be ex-

pected from looking at the code.  Since the loop body 

code computes EAX from ECX, then EBX from EAX, 

and then EDX from EBX (and the prior EDX), it might 

seem as though the auxiliary slices should work in the 

same way.  However, in loop behavior computation, the 

slicing is based on the previously computed functional 

behavior of the loop body, not the code of the loop 

body.  Thus, since the value of EBX is computed from 

the newly assigned value of EAX which was computed 

from ECX, from the point of view of functional behav-

ior, the auxiliary slice for EBX depends only on the 

control slice featuring only ECX.  Similarly, the auxil-

iary slices for all the other loop variables (EDX, EAX, 

flags) only depend on the control slice.  

Two auxiliary slice function SRTs are used to com-

pute the remainder of the loop behavior from the con-

trol slice course-of-values.  The first such SRT applies 

to all the loop variables except EDX, and states that if 

an auxiliary slice re-computes the auxiliary loop varia-

ble directly from the control slice every time, then its 

final value only depends on the last iteration of the 

loop, or on its original value if the loop never iterates.  

Thus, the final value of EAX is given by the following 

behavior expression computed by the FX system, ex-

pressed as a conditional concurrent assignment, where 

M represents memory (“|” means the union of disjoint 

cases): 

[ (ECX == 1) -> 

     EAX := EAX 

| (ECX != 1) -> 

     EAX := M[ESI +d 1] 

] 

Similarly, the final value of EBX is given by the fol-

lowing expression computed by the FX system: 

[ (ECX == 1) -> 

     EBX := EBX 

| (ECX != 1) && (M[ESI +d 1] >s 0) -> 

     EBX := 1 

| (ECX != 1) && (M[ESI +d 1] <=s 0)-> 

     EBX := 0 

] 

In the EBX behavior, the first case (ECX == 1) oc-

curs when the loop body never executes, and EBX is 

left unchanged.  The second case occurs when the loop 

body executes, and the last array element that it checks 

is strictly positive.   

The third case occurs when the loop body executes, 

and the last array element that it checks is zero or nega-

tive.  The “+d” notation reflects 32-bit wrap-around 

addition, and the “>s” and “<=s” notations reflect a 

signed comparison instead of an unsigned comparison. 

The second auxiliary slice function SRT applies on-

ly to the EDX auxiliary slice, which is recognized as 

accumulating the sum of an expression across the loop 

iterations, examining each array element in turn.  For 

EDX, the final value (for the initialized loop) is given 

by: 

[ EDX := 

    sum of 

      (x -> is_pos_signed_32(x)) 

    over 

      M[(ESI +d 1)..(ESI +d ECX –d 1)] 

] 

Next, Figure 4 depicts an altered version of the 

loop, where a malicious code exploit has been deliber-

ately added.  Here, a check has been inserted into the 

loop body that looks for a -83 value in the memory 

array, and if that element value is found, the direction 

flag DF is set so as to change the direction of any future 

Intel string operations, which will likely result in a 

buffer overflow.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Loop program with malicious code  

The FX system computes the behavior of this loop 

using slicing as usual.  The control slice is exactly the 

same as before, and the behavior for ECX is likewise  

identical.  The computed behavior for EAX is different, 

reflecting the fact it is used as for temporary storage in 

the malicious exploit:  

[ (ECX == 1) -> 

     EAX := EAX 

| (ECX != 1) -> 

     EAX := M[ESI +d 1] +d 83 

] 

 

start: 

        xor EDX, EDX 

top: 

        dec ECX 

        jz done 

        xor EBX, EBX 

        mov EAX, [ESI+ECX] 

        cmp EAX, 0 

        setg BL 

        add EDX, EBX 

        add EAX, 83 

        jnz top 

        std 

        jmp top 

done: 

        ret 

 



  

 

The new behavior for EBX and EDX is the same as 

in the original code, because the auxiliary slices are the 

same.  Since the EDX register holds the final answer of 

the computation, testing that only checks the value of 

EDX will not find the malicious exploit. 

However, this time, the FX computation shows ad-

ditional behavior for a new auxiliary slice for the DF 

flag which reflects the fact that it is set under certain 

conditions.  If there is an auxiliary slice function SRT 

to specifically recognize these conditions, then the add-

ed behavior will be shown as follows:  
 

[ exists 

    (x -> (x == -83)) 

  over 

    M[(ESI +d 1)..(ESI +d ECX –d 1)] 

    -> DF := true 

 

| not (exists 

    (x -> (x == -83)) 

  over 

    M[(ESI +d 1)..(ESI +d ECX –d 1)]) 

    -> DF := DF 

] 

Otherwise, if there is no SRT to specifically recog-

nize these conditions, as would typically be the case, 

then the behavior of DF in the conditional concurrent 

assignment statement will be expressed in terms of re-

cursively defined generic loop behavior functions as 

computed through direct application of the correctness 

theorem.  However, even in this situation, it is clear that 

undesired code has been inserted, as there is no reason 

to set the DF flag under any circumstances. 

This is a key point.  As depicted in Figure 5, testing 

can cover only a fraction of the execution space, but 

behavior computation covers all of the behavior space.  

That is, the disjoint conditional concurrent assignments 

produced by behavior computation represent all possi-

ble program behaviors, whether correct or incorrect, 

legitimate or malicious.   

With respect to this example, it is unlikely that a 

test case would be created to execute the program un-

der the condition that a -83 value was present in the 

array.  For an intruder who inserted the malicious code, 

however, this is the attack vector for achieving desired 

objectives.  But for the FX system, this is just another 

case of computed behavior that will be automatically 

produced along with the others.     

This example illustrates the potential power of be-

havior computation to help verify correct functionality 

and security properties, beyond what is practically 

achievable with testing.  Of course, other forms of test-

ing will always be required, for example, integration 

and performance testing, but computed behavior may 

help to improve the speed and completeness of verifica-

tion, particularly at unit and subsystem levels.   

 
 

Figure 5. Testing and behavior computation 

4. Computed exploration of software 

The behavior computation process for a program 

requires deriving the behavior of every control struc-

ture of which it is comprised.  This rich body of highly 

structured behavioral sub-specifications associated with 

control structures can be applied to exploration of code 

in behavioral terms [2,3].  Such exploration provides 

fast insight into how particular behaviors are produced.  

In particular, three methods for applying computed 

behavior to program exploration have been investigated 

in the FXplorer application, as follows:  

 

 BehaviorCase or Path Quest 

 BehaviorHere or Come Here 

 BehaviorPath or Connect the Dots 

 

     By default, FX displays the whole program behavior 

database. Using this display, a user might decide that 

one or more of the behaviors looks suspicious or erro-

neous. The user might want to know which code state-

ments and their accumulating behaviors contribute to 

the case in question. 

     BehaviorCase, FXplorer’s Path Quest function, 

starts with a user-selected case in the behavior database 

of a program. It determines and displays the composi-

tions of all the accumulating behavior along all the 

code paths that produce that case. All other code and 

behavior is eliminated. Thus, a programmer can deter-

mine what part of the original program is responsible 

for a given result.  Figure 6 shows an example of the 

Path Quest function and accumulating behavior. 



  

 

          BehaviorHere, or FXplorer’s Come Here func-

tion, starts with a user-selected statement in the pro-

gram. It determines and displays the compositions of all 

the accumulating behaviors along all possible code 

paths to that statement. Come Here allows a program-

mer to identify a particular point in a program and see 

all the paths and accumulating behaviors leading to that 

point. Figure 7 shows a Come Here function performed 

on statement 6 of Figure 6. 

 

 

Figure 6. BehaviorCase or Path Quest exploration 

     BehaviorPath, or Connect the Dots, starts with a 

user-selected code path through the program. It deter-

mines and displays all the compositions of the accumu-

lating behavior along that path. By connecting the dots, 

a programmer can examine a particular path through 

the program to see the accumulating and final behavior 

it causes. Figure 8 shows user controlled connect-the-

dots exploration. 

 

 

Figure 7. BehaviorHere or Come Here exploration  



  

 

     These three functions provide a unique way of un-

derstanding a program. They allow direct answers to 

common programmer questions such as: "Where does 

this result come from?" (BehaviorCase), "What hap-

pens if this path is executed?" (BehaviorPath), and 

"How does this program get here?" (BehaviorHere). 

The ability to answer these questions in full without 

doing a line-by-line analysis improves a programmer’s 

ability to understand program behavior, to verify that 

the results are correct, and to validate the results against 

documentation of specifications or designs.  

     Capabilities such as these can provide programmers 

and analysts with access to computed behavior in the 

context of immediate needs for program understanding, 

verification, debugging, modification, or evolution. 

 

 

Figure 8. BehaviorPath or Connect-the-Dots exploration 

5. Comparison with other work  

The technology of behavior computation can be 

contrasted with symbolic execution and abstract inter-

pretation as follows: 

  

5.1 Symbolic execution 
  

Symbolic execution [5] is an approach originating in 

the 1970’s to understand what a program does on gen-

eralized input data expressed using symbolic variables. 

Typically, symbolic execution only traces through a 

single possible execution path of a program.  Recently, 

symbolic execution has been generalized to operate 

over a limited subset of related execution paths, e.g., 

paths that differ only in the number of times a given 

loop is iterated [9].  Behavior computation significantly 

generalizes symbolic execution by expressing the com-

plete behavior of a program over all possible paths as a 

static, symbolic expression.  This is possible because 

behavior computation uses automated program structur-

ing to recover the underlying hierarchical structure of a 

program, so that all its control structures, which em-

body all its paths, can be analyzed in a systematic man-

ner.  In behavior computation, a program is examined 

in a bottom-up process, first analyzing the leaf-node 

control structures, then combining those analyses at 

higher and higher levels to understand the larger pro-

gram.  In symbolic execution, paths are examined start-

ing from the entry point of the program, and it is a dif-

ficult, heuristic effort to combine the results from dif-

ferent paths.  Programs can exhibit massive numbers of 

possible execution paths, but are always comprised of a 

finite number of control structures.   Behavior computa-

tion is a finite process that deals with control structures, 

not paths, and is thus guaranteed to terminate. 

  

5.2 Abstract interpretation 
  

Abstract interpretation [4] is an application of denota-

tional semantics in which a scaled-down, computation-

ally tractable semantic domain is used to rigorously 

approximate a fuller, mathematically defined but com-

putationally intractable semantic domain. In cases 

where the scaled-down domain of abstract interpreta-

tion is still suitable for an application, the extraction 



  

 

algorithms of abstract interpretation are generally more 

efficient than behavior computation. However, given a 

difficult input program, if it turns out that the scaled-

down domain is not suitable, the abstract interpretation 

algorithms typically return no information (i.e., the 

bottom element of the domain lattice).  In contrast, be-

havior computation will always return a correct sym-

bolic expression of full program behavior, although 

perhaps not is simplest possible terms.  

 6. Next steps in behavior computation 

Oak Ridge National Laboratory (ORNL) is apply-

ing behavior computation to smart grid components, 

with initial focus on embedded software in smart me-

ters.  The computations are based on the functional 

semantics of instructions for the MSP430 processor, 

plus functional definitions for meter components under 

software control.  The objective of this effort is to ana-

lyze computed behavior both to determine if functional-

ity is correct and to help reveal any security vulnerabili-

ties that may be present.  

Research and development in software behavior 

computation will continue at ORNL to exploit this new 

technology in other areas, such as software develop-

ment, test and evaluation, reverse engineering, and anti-

tamper analysis.  FX algorithms are being migrated to 

high performance computing (HPC) environments 

available at ORNL.    

Application of the technology to analysis of soft-

ware security properties is a focus area [13].  Malware 

exhibits a fundamental vulnerability: it must execute on 

the target computer in order to achieve its objectives, 

and the executable code unavoidably embodies com-

putable behavior, just as does any other code.  FX 

computes the behavior of all of it, whether legitimate or 

malicious.  In so doing, it reveals the presence of any 

malicious content, for example, sleeper code or logic 

bombs, that may be hidden in legitimate code.    
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