
DTT: A Distributed Trust Toolkit for Pervasive
Systems

Brent Lagesse,∗ Mohan Kumar,∗ Justin Mazzola Paluska,† and Matthew Wright∗
∗ Department of Computer Science Engineering, University of Texas at Arlington, Arlington, TX

{Brent.Lagesse,mkumar,mwright}@uta.edu
† MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA

jmp@mit.edu

Abstract—Effective security mechanisms are essential to the
widespread deployment of pervasive systems. Much of the re-
search focus on security in pervasive computing has revolved
around distributed trust management. While such mechanisms
are effective in specific environments, there is no generic frame-
work for deploying and extending these mechanisms over a vari-
ety of pervasive systems. We present the design and implementa-
tion of a novel framework called Distributed Trust Toolkit (DTT),
for implementing and evaluating trust mechanisms in pervasive
systems. The DTT facilitates the extension and adaptation of trust
mechanisms by abstracting trust mechanisms into interchange-
able components. Furthermore, the DTT provides a set of tools
and interfaces to ease implementation of trust mechanisms and
facilitate their execution on a variety of platforms and networks.
In addition to the adaptability and extensibility provided by
this design, we demonstrate through simulation that use of DTT
improves utilization of resources and enhances performance of
existing trust mechanisms in pervasive systems. We are currently
developing an implementation of the DTT that can be easily
deployed in pervasive environments.

I. INTRODUCTION

Traditional approaches to security management and deploy-
ment typically fail to scale to the varied, mutable environments
of typical pervasive computing systems. Instead, pervasive
computing environments must rely on distributed trust [5],
[10], [15], [7], [3]. While these distributed trust solutions scale
usefully in pervasive environments, the infrastructure of these
systems is tied to the single, specific trust mechanism explored
by the researchers. This makes it difficult to reuse, combine,
and extend trust mechanisms in custom systems or protocols,
thereby limiting both research in trust and the use of trust in
real systems. In our examples, we use trust to establish secure
resource access, but the Distributed Trust Toolkit (DTT) is not
limited to that usage.

In this paper, we present the DTT, an infrastructure for man-
aging trust mechanisms in pervasive computing environments.
We have accomplished three main objectives with the DTT: (1)
facilitating sharing of trust information in pervasive systems,
(2) encouraging sharing of trust algorithms and code, and (3)
making trust information systems easier to use and deploy in
pervasive environments. The DTT enables the sharing of trust
information through the formation of Trust Groups, provides
a ready-made infrastructure for developers to create new and
reuse existing trust mechanisms, and eases the integration
of trust into pervasive systems through interoperability and

incremental deployment.
Pervasive applications using the DTT connect to a DTT

daemon that manages trust for the application. The DTT
daemon contains a set of pluggable Trust Blocks, each of
which provides an implementation of some trust mechanism.
Trust Blocks are modular and may inherit individual modules
from other Trust Blocks, leading to easy customization of trust
mechanisms and improved code reuse.

A. Motivating Scenario

Suppose that Alice, a computer science student at a univer-
sity, wishes to deploy an adaptive media system. Her users
are other students with laptops and smartphones that move
around the campus, yet expect their media streams to follow
them. In testing, Alice finds that students are often unhappy
with her application because many of the data sources that her
application chooses are slow, unreliable, or stream the wrong
media. The users’ mobility compounds the problem because
the system must continually choose new sources without full
knowledge of how trustworthy or reliable the sources are.
Furthermore, Alice wishes to make use of the heterogeneous
nature of her environment and utilize local networks formed
by connections using local 802.11 and bluetooth in addition to
internet and 3G connections to discover new trust information.

To remedy this problem, Alice uses the DTT to enable her
system to choose better, trusted sources. First, she chooses
a Trust Block that defines her trust policies. Initially, Alice
decides to trust only sources that have X.509 certificates signed
by her university’s certificate authority. To implement this
decision, she modifies the initialization code of her application
to instantiate a CertificateTrustBlock. Later, in her discovery code,
Alice only includes sources that are trusted by her Trust Block:
if (tb.isTrusted(source)) {

validSources.add(source);
}

At runtime, the Trust Block contacts a discovered DTT
daemon and takes care of the certificate exchange protocol
between her application and the source. As network interfaces
for her protocols are well-established, the Trust Blocks do not
have to be modified to access the certificates through any of
the networks her users have available at any time.

When Alice deploys the new DTT-based application, her
users are thrilled with the reliability of the sources, but



dissatisfied by the small number of “certified” sources —
mostly official university lectures and seminars. To satisfy her
users, Alice decides to include a new Trust Block based on a
distributed reputation system, based on Credence [13], rather
than certificates. To make the change, Alice simply instantiates
a CredenceReputationTrustBlock rather than a CertificateTrustBlock
and redistributes her application. At the application-level,
Alice does not need to change her discovery code because the
CredenceReputationTrustBlock defines a new policy for isTrusted()
that her application can just use.

B. Trust Groups

An important novel component of the DTT is the ability to
create Trust Groups, in which a subset of the nodes with pre-
established trust relationships share trust data. Trust Groups
utilize the heterogeneity of pervasive computing environments
to enhance the performance of existing trust mechanism. The
members of a Trust Group, such as the various devices in
a single user’s personal area network (PAN) or a cluster of
friends, trust each other’s judgments about other nodes in
the system. In our example, a group of friends may share
reputation information about sources, so only one peer needs
to engage in the full Credence protocol. DTT enables nodes
within a trust group to share trust information with each
other, thus substantially reducing the time and energy spent
on evaluating the trustworthiness of others.

C. Paper Roadmap

We will first discuss the background and work that is related
to DTT in Section II. In Section III, we outline the design
of the DTT, including the implementation of Trust Groups.
We use simulation to evaluate the benefits of our design in
Section IV. We discuss the features and versatility of the DTT
in Section V. Finally, we conclude in Section VI.

II. BACKGROUND

Pervasive environments are replete with disparate hardware
and software entities that are geared to meet the individual
needs of users. Pervasive computing endeavors to provide
users the flexibility to access a variety of services in a
transparent manner, regardless of what devices, technologies
or interfaces they use. Providing security and reliability of
services is particularly challenging in these environments.

Closed pervasive environments such as smart homes, banks,
laboratories, clinics, vehicles, and personal area networks
have important differences that prevent monolithic security
solutions from being adopted universally. For example, the
pervasive system in a public bus is completely different from
that in an assisted-living home in terms of challenges, services,
privacy, number of users, etc. Even within the same physical
environment, applications may have different requirements.
For example, a gaming application service and a video surveil-
lance service within a public bus have different challenges and
issues. Despite these differences, it is desirable to maximize
the amount of work that can be reused when deploying such
a diverse set of systems.

A popular approach to addressing security challenges in
these environments is the use of distributed trust mechanisms.
Trust allows users to use previously gathered information,
such as certificates or reputation scores, to interact with
peers in the system with some assurance. However, most
trust mechanisms currently available for pervasive computing
lack flexibility, modularity and scalability. There is a need to
develop mechanisms that are adaptable to mobility and discon-
nection, portable to different pervasive systems, and scalable
with respect to number of devices, users and applications. The
proposed DTT envisages to address these critical issues to
make trust management more usable and easily extensible to
a wide variety of pervasive environments.

A. Related Work

Distributed trust management has recently been a topic of
much research interest in pervasive computing. However, the
focus of these systems has largely been on the infrastructure
and implementation of individual trust mechanisms. In this
section, we describe a few of these systems and note how
their approaches differ from that of DTT.

PolicyMaker [3] is a distributed trust-management engine
designed to handle authorization via compliance checking. A
compliance checking algorithm in the engine handles requests,
credentials and policies in order to determine if the request
is allowed. Keynote [2] is designed with similar goals as
PolicyMaker and maintains many similarities; however, it has
two additional goals: standardization and ease of integration
with applications. We share these goals with Keynote, but
take a much different approach. Whereas Keynote places more
responsibility on the compliance checker and standardizes
the policy assertion language, DTT accomplishes standard-
ization and ease of integration through an abstracting trust
mechanisms into modular Trust Blocks which can be easily
integrated into both new and existing systems through the DTT
Daemon.

Vigil [5] is a distributed trust-management architecture that
utilizes Public Key Infrastructure (PKI) and Role-based access
control (RBAC), but extend RBAC by using ontologies in
XML to represent properties and constraints which allows for
dynamic and policy-based delegation and revocation of rights.

The most similar work to our research from an architectural
standpoint is that of the Gaia Authentication Service [10]. Gaia
Pluggable Authentication Modules (GPAM) are used to im-
plement a security system that decouples authentication from
both the individual hardware and the security framework itself.
GPAMs are divided into two types, Authentication Mechanism
Modules (AMM) and Authentication Device Modules (ADM).
AMMs are used to define the authentication mechanism in
a device-independent manner and ADMs allow new devices
to be incorporated into the system for use by AMMs. Our
approach differs from that of Gaia in that we do not focus
solely on authentication, but on distributed trust in general. Our
approach is designed not only to allow for pluggable modules
(our Trust Blocks), but also to ease implementation through
extension and reuse of Trust Blocks.



1) Limitations: The systems described above primarily
focus on the distribution and checking of certificates against
policies to establish trust. We find that this approach has
several significant drawbacks. First, it limits the use of trust in
the system to that of certificate-based trust. Other types of trust
exist in other areas of distributed computing that are useful in
a pervasive computing such as reputation-based [15], [7], [12],
[8], [14] or recommendation-based [11], would be difficult or
impossible to implement in these trust-management systems.
Second, the type of trust is largely tied to the trust distribution
mechanism. As a result, many components of the systems
described have limited reusability, especially if the use of trust
is not for authentication and access control, as is the case with
most previous approaches. DTT addresses both of these issues
by providing a framework for highly modular and reusable
components, allowing different trust mechanisms to be applied
to many types of environments and applications. DTT goes
beyond just extending the scope of a trust management toolkit,
it also utilizes the resources in pervasive systems to improve
the performance of existing trust mechanisms.

III. DTT SYSTEM DESIGN

The DTT is a set of tools that enables the implementation,
deployment, and sharing of trust-related components for per-
vasive systems. The primary component type is called a Trust
Block, and it contains everything needed for an application to
use trust-based decision-making. Thus, the DTT has only two
programming interfaces: an Application Programmer Interface
(API), which facilitates the development of applications using
Trust Blocks, and a Trust Block Programmer Interface (TPI),
which facilitates the development of the Trust Block modules
themselves. Additionally, the DTT includes a DTT daemon
that manages the Trust Blocks. As illustrated in Figure 1,
applications may use a variety of remote interfaces, such as
our XML-RPC interface, to connect to the daemon, which
maintains local copies of Trust Blocks and any data the Trust
Blocks have stored. Also, a node may have several applications
that access a daemon. Each application may make use of one
or more Trust Blocks. Each Trust block may acquire trust
information from one or more network interfaces that provide
a common interface for portability purposes. A Trust Block
may additionally query the local trust database for previously
cached trust information.

While the DTT works for any distributed system, it is par-
ticularly designed for pervasive systems. The DTT uses Trust
Groups to improve the performance of existing algorithms
by utilizing a users set of devices such as cell phones and
PDAs. Furthermore, DTT is designed to mask heterogeneity
and ease porting to new devices and networks through a set of
simple, generic interfaces. Finally, the DTT is designed to ease
the development of trust mechanisms for new environments
through a modular approach to the design of trust mechanisms
(refer to Section IV-B for an example of transition Credence
from an internet-based implementation to one more suitable
for a MANET by only changing the Protocol component).

Fig. 1. DTT Architecture

A. Design Goals

In Section I, we introduced three goals for the DTT: en-
abling trust sharing, encouraging algorithm reuse, and easing
trust system deployment. To meet our first goal of facilitating
the sharing of trust information, we developed Trust Groups.
Trust Groups are a natural consequence of the DTT design, as
the nodes in a group will share a single DTT daemon. This
makes it easier to share trust information, by simply storing
it in a single host. The DTT daemon thereby acts similarly
to super-nodes in P2P file-sharing systems like Kazaa [1],
except that the DTT daemon serves trust information instead
of directory information. Trust information can also be shared
within a single node, since multiple applications running on
a single entity can utilize a single instance of the DTT. For
instance, consider a laptop that is part of both a Smart Home
environment and part of the Adaptive Media System discussed
in Section I-A. Since these two applications may utilize
resources from overlapping sets of nodes, trust information
can be shared between applications.

To meet our second goal of encouraging code sharing and
reuse, we have two design features. First, the use of Trust
Blocks creates a clearly defined module structure for which
the API can provide a generic interface. This means that
applications need not change much to use different Trust
Blocks. Second, the TPI is designed to facilitate composition
of modules within Trust Blocks. Each Trust Block is com-
prised of three functional components, each of which may



Fig. 2. The components of a Trust Block

be mixed-and-matched with other components to encourage
sharing of code.

Finally, to meet our third goal of facilitating deployment and
use of all trust mechanisms, we have taken measures to ensure
platform-independence and interoperability. In particular, we
chose to make the DTT daemon cross-platform. We also
ensure that the DTT may interoperate with other platforms
not using the DTT and that different Trust Blocks can be used
at the same time. Interoperability means that DTT and various
Trust Blocks can be deployed incrementally without disrupting
the ongoing operations of a system.

In the rest of this section we will describe the design of Trust
Blocks, the core component of our system, the design of Trust
Groups, and how the DTT ensures platform-independence and
interoperability.

B. Modular Trust Blocks

Each Trust Block consists of three layered components:
the Protocol, the Computation, and the Presentation. Figure 2
illustrates the relationship between the components. An ap-
plication accesses the Trust Block through its Presentation
component. The Presentation component, in turn presents the
trust information determined by the Computation component.
Finally, at the lowest layer, the Protocol component interacts
with other entities on the network to acquire the data that the
Computation component needs.

The API provides access to a set of mixins and more
complex Trust Blocks. The API can either be accessed as a
local library or through remote invocation. The DTT mixins
provide basic trust functionality that can be used for simple
scenarios without having to create more complex mechanisms.
The mixin functionality consists of isReputable, isRecommended,
isAllowedRole, and isCertified which provide reputation, rec-
ommendation, role-based decisions, and X.509 certification.
Furthermore, the API allows access to specific Trust Blocks
that are implemented with a common interface. This interface
uses the eval method to intiate an evaluation of a user or
resource and the getResults method to retrieve the up to date
results of the evaluation for a particular evaluation request. The
result of a request is of type TBPresentation which is discussed
in Section III-B2.

1) Trust Block Computation: The Computation component
is responsible for implementing the algorithms involved in

computing the trust values that will be interpreted by the
Presentation component. For example, a simple reputation
computation might count the votes for the object it is eval-
uating to determine the object’s reputation score. Likewise, an
X.509 certificate [4] computation mechanism might verify that
the certificate was signed by a trusted Certificate Authority,
that it was within the valid time frame of the certificate, and
that the certificate had not been revoked. However, in no case
does the Computation component make a policy decision on
the data it evaluates. This policy decision-making is left to the
Presentation component. Computation components connect to
the Presentation layer through the doComputation method and
to the Acquisition component through an acquireData method.
The Computation component can also acquire cached trust
information from the database. The information is tagged
based on type (ie, reputation or a certificate) and subject (ie, a
particular user or type of resource). This is discussed further
in Section III-C.

2) Trust Block Presentation: The Presentation component
is the “application-facing” component of a Trust Block. It
is responsible for implementing policy decisions — e.g.,
whether a certificate is “valid” or an object reputable enough
— based on trust data from the Computation component.
For example, in a reputation-based system, one Presentation
component might report only the “most reputable” object,
while another might report a list of the most reputable objects.
In a certificate-based system, the Presentation component may
ignore the expiration date of a certificate when looking at old
data. In our scenario of Section I-A, the tb.isTrusted() function is
implemented by the Presentation component. The Presentation
layer is connected to the Computation component through the
getResult method and a Presentation object is returned by the
API to the application.

3) Trust Block Protocol: The Trust Block Protocol com-
ponent is the “network-facing” component of a Trust Block.
The Protocol component is divided into two sub-components:
an Acquisition module that makes outgoing requests to other
entities on behalf of the Computation component through
the getData method, and a Request Handler that handles
protocol messages from other entities in the system. This
split was created to allow the developer to customize the
way the Trust Block acquires data without changing the
Trust Block’s interaction with other entities in network. For
example, a broadcast Acquisition component may simply use
the underlying network broadcast to make requests whereas
a more complex Acquisition module might maintain a list
of preferred peers to query for trust information. In either
case, trust protocol messages received from other hosts are
unaffected by the decisions made in the Acquisition module.

The Protocol components are implemented using the TPI.
The TPI’s interface to the network adapter conists of broadcast,
multicast, and query along with forwarding versions each
method as additional logic may be required for a forward that
is not required in initiating a request, such as checking the
TTL of a message. Every network interface implements its
version of these functionalities for the particular protocol. The



Fig. 3. Devices in a personal area network using a Trust Group.

TPI also provides an interface for receiving and responding to
messages from the network. The getMessage and sendMessage
methods are implemented to receive incoming queries and to
respond to the appropriate node as a result of the queries.
As an example, a trust block designed for Gnutella over
the Internet could be dropped into a local adhoc network
that communicates over TCP/IP and utilize the network-layer
broadcast to acquire trust information and unicast to respond
to the query as implemented in the network interface in the
DTT Daemon. As a result, none of the code for the trust block
needs to change despite the fact that the application is no
longer running on an overlay network.

C. Trust Groups

The DTT design encourages the formation of Trust Groups.
The main purpose of a Trust Group is to enable peers to share
trust information and enhance performance in calculating trust
values.

Trust Groups consist of a DTT Host, which runs a DTT
daemon, and several DTT Members. Trust information is stored
in a database on the DTT Host and can be used by any
member attached to the Host. Since the Members attached
to the Host may be running several different applications that
utilize different Trust Blocks, the trust information stored in
the database is tagged with a type (e.g., an X.509 certificate
or a User Recommendation). The tags allow DTT Members
to retrieve any trust information that they can utilize from
the existing cache of trust information stored in the database.
As some Trust Blocks may use similar, but not exactly the
same trust information, some additional trust information may
be used from the database if the Trust Block has the means
to convert it into a usable form. For example, if a Trust
Block collects boolean reputation values (trusted or untrusted),
but there were votes from another Trust Block that were in

the continuous range of [0,1], then the boolean reputation
system might translate any vote with a value under 0.25 to
count as untrusted and any vote over 0.75 to count as trusted
(ignoring any votes in between as being too noisy). There is
no assumption that this trust information is transitive, it is
only made available to assist the entities in quickly coming
to a decision if the trust mechanism chooses to use the
information. In Section IV, we evaluate the effect of shared
trust information in an adaptive media system using a Trust
Block that implements the Credence reputation system.

Trust Groups in our simulations are formed out of pre-
trusted entities, such as the Personal Area Network (PAN)
shown in Figure 3. However, we also permit the dynamic
formation of Trust Groups. These groups can be formed oppor-
tunistically using individual DTT daemons to bootstrap into a
Trust Group based on both mutual trust and the expectation
that they will benefit from joining the group. Furthermore,
since entities in pervasive computing environments may either
sleep or move, groups may morph over time. In such a case,
the most stable and powerful entities should host the DTT
daemon for the group. In dynamic Trust Group formation,
each entity is initially a host. However, an entity can discover
other hosts in the area, establish a level of trust with one of
them, and attach as a member of the host’s Trust Group. If a
host breaks its connection from the Trust Group for any reason,
each disconnected member will respawn a DTT daemon and
can either seek to find another host to attach to or act as
its own host. Trust information stored by the original host
can be transfered in a graceful exit or some saved locally
by members of the trust group in the event of a random
failure by the host. In this way, Trust Groups are flexible
enough to be deployed in a variety of pervasive computing
environments. The optimal methods for determining which
hosts to attach to and what constitutes necessary trust for doing
so are largely application- and system-dependent and, as a
result, outside the scope of this paper; however, many of these
issues could be addressed with a scheme similar to Seamless
Service Composition (SeSCo) [6] in dynamic environments
or the Utility Based Clustering Architecture (UBCA) [9] for
decentralized clustering.

D. Platform Independence

The DTT is designed to achieve several types of platform
independence. The DTT’s implementation is largely language
independent. Our implementation of the DTT is written in Java
to increase its independence from specific operating systems
and hardware. The DTT Trust Blocks are also independent of
the network that they acquire information from.

The DTT daemon is not tied specifically to Java, and
additional implementations can be written in other languages.
Likewise, we have implemented our Trust Blocks in Java, but
the Trust Blocks can be implemented in other languages. It is
also possible to execute Trust Blocks written in one language
with a DTT written in another, given appropriate wrappers or
exported methods.



To achieve independence from the network from which
trust information is acquired, the DTT uses two interfaces,
a Net Requester and a Net Responder. These two interfaces
form the core of the Trust Programmer Interface (TPI), and
they are implemented to hide the details of the underlying
network from the creator of a Trust Block. This means that
Trust Blocks are portable to any network for which there is
an implementation of the Net Requester and Net Responder
interfaces available for the Trust Block’s Protocol components
to access. For instance, if a reputation Trust Block originally
acquired trust information from a Gnutella P2P network on
the Internet, the same Trust Block could be used to determine
reputations on a local bluetooth network. A Trust Block thus
can have a collection of Net Requesters and Net Responders
that it uses to acquire trust information. This allows the
Trust Block to acquire information from multiple networks
if available or necessary.

E. Incremental Deployment

Since the DTT is a client-side library with pluggable Proto-
col components, the DTT can be incrementally deployed into
a pervasive computing environment already running existing
communication or distributed trust protocols as long as the
appropriate Protocol components are loaded into the DTT
daemon. Moreover, if the DTT is widely deployed, the DTT
may aid in protocol upgrades, as a single DTT can engage in
multiple versions of a protocol.

IV. EVALUATION

To show the value of DTT as a toolkit for research and to
demonstrate the value of Trust Groups, we have simulated a
sample pervasive computing environment with an implemen-
tation of the Credence reputation system [13]. Credence is an
object-reputation system designed to operate on the Gnutella
network. A peer running Credence accumulates votes about
a particular object (identified by a hash of the file contents)
via a Gnutella broadcast. The peer maintains a database of
accumulated votes and the votes of the peer making the
request. It then computes a correlation coefficient between
itself and each peer it has a vote from. The coefficient is used
to weight the the vote the peer has received from that particular
peer. The total weighted result is then used to determine if the
object is reputable and should be downloaded.

The use of Credence has three important benefits. First,
it serves as a proof of concept to show that prior work in
trust mechanisms can be implemented within DTT. Second,
we have selected Credence in particular because it is both
deployed as a real system [14] and as a simulated system [13],
which makes it both practical and easy to compare to. Finally,
it enables us to see the benefits of using Trust Groups to
enhance the performance of an established system.

A. Simulation Setup

The simulation portrays an adaptive media system similar
to that described in Section I-A. In this system, entities make
requests for media, which is discovered and linked together by

Number of Peers 50
Number of Media Objects 4000
Number of Genres 20
Number of Genres of Interest 4
Number of Groups 5
Group Similarity Random
Peer Rating Accuracy 90%
Portion of Bad Media Objects 50%
New Media Objects per Day 16
Simulation Days 100
Average Number of Connections 5
Average Requests per Day 5
Media Object Density 80%

TABLE I
DEFAULT SIMULATION PARAMETERS

the planner. To improve the quality of the media that is being
supplied, the system uses Credence to determine the most
reputable media sources. Each day, every entity requests an
average of five media objects (uniformly distributed between
0 and 10 requests). The media requests are broken into separate
genres that each entity prefers. Example genres may include
“Action Movies” or “Jazz Music.” As the simulation resulted
in similar results in terms of the ability to identify bad media
objects to those shown in the Credence simulations [13], we
focus primarily on the reduced cost to achieve these results
that is accomplished by using Trust Groups. For convenience,
Table I contains the values used for simulations unless oth-
erwise noted. Messages are tallied as individual votes and
requests that are sent. This means that aggregate messages
(such as reporting several votes at once) still count as the
number of votes that are sent. We define a trust message as
initial requests, forwarded requests, and responses, and count
the overhead in terms of the number of trust messages. For the
simulations with Trust Groups, the trust message count also
includes all votes cast, since the DTT may not be running
locally. Each data point represents the average over 100 runs
of the simulation. The current implementation of the DTT, on
which these simulations were run, is written in Java.

B. Simulation Results

Our first simulations were designed to demonstrate the
effect of increasing the number of peers in the system.
Figure 4 shows the effect of increasing the number of peers
in the system in terms of trust messages sent per peer on
both Credence and Credence implemented with Trust Groups.
Furthermore, the simulation also includes the effect on peers
attached to the groups. As attached entities are often resource-
constrained, such as a PDA being used for mobile viewing of a
movie, it is important that they spend less energy transmitting
messages for computing trust. The decrease in trust messages
sent by each peer in Credence occurs because the resources
(and hence votes) become more abundant, so trust queries
take less forwards to find new votes. Likewise, the DTT peers
see the same effect, but by utilizing DTT trust groups the
effect is more pronounced since votes are shared at a DTT,
thus requiring less communication between DTT nodes. The
average DTT peer and the average attached peer eventually



Fig. 4. The Effect of the Number of Peers on Trust Messages per Peer

Fig. 5. Comparison of Acquisition Components

converge because the groups become large enough that most
of the votes that need to be acquired can be found within the
DTT group. At that point, the number of messages sent is
approximately the same as the number of requests made plus
the number of votes cast.

Continuing with our examination of modular Trust Blocks,
Figure 5 shows the results of changing the acquisition compo-
nent used in the simulation. The Broadcast plot is the result of
acquiring trust information for Credence via a Broadcast over
a Gnutella network with a TTL of 5 hops. The Random Walker
plot is the result of plugging in a Random Walker Acquisition
component on the same Gnutella network.

We examine the energy consumption of resource-
constrained members of a Trust Group when they are able to
enter sleep-mode once they have offloaded a trust request to
the DTT Host, rather than waiting for responses as they would
need to do if not in the Trust Group. The energy simulation
assumes a cost of 1 energy unit per time step to stay awake
and 0.1 energy units per time unit to sleep. Furthermore,

Fig. 6. Energy Consumption per Peer

Fig. 7. Effect of Exchanging Protocol Components on Confidence Intervals

a sent message costs 1 additional energy unit. Each non-
Host entity sleeps for the 5 time steps after the trust request.
Each resource access takes one time step. The result of this
simulation is presented in Figure 6. The dominating portion of
the energy consumption in this simulation setup comes from
the messages sent. In scenarios where less messages are sent
relative to time in the system, for example, an opportunistic
networking application, then benefits of the DTT become even
more pronounced.

Our last simulation examines the modular Trust Block
feature of the DTT. To do this, we break from our previous
simulation scenario. We take a simple average vote Trust Block
(A peer asks for votes on the reliability of a particular object
and if average vote rates the object above 0.50 then it is
accessed, otherwise it is not). Votes are in the continuous
range of [0,1]. Additionally, this is performed in a mobile
environment, which decreases the number of available votes.

Since we have fewer votes, we are interested in determining
the average range of the 95% confidence interval over the



average of the requests (using the same parameters in Table I).
To obtain the confidence results in Figure 7, we first examined
the original Request Handler component, then exchanged it
with the Random Subset Request Handler components. In the
simplistic Request Handler, requests were only answered with
personal experience; however, in the Random Subset Request
Handler, the handler answers requests with a random subset of
the votes that the entity has accumulated regarding the object.
The trade-off between the two Request Handler components
is that the simplistic one sends less data over the network, and
the Random Subset handler allows votes to persist even after
mobile peers have become unavailable.

V. DISCUSSION

A. Trust Programming

The primary benefit of the Trust Block abstraction is the
ability to tune, extend, and adapt trust mechanisms simply
by changing Trust Block components. Suppose the users in
our streaming media example start relying more on their
smartphones, which have less energy available than their
laptops. Alice investigates and determines that Credence net-
work broadcasts are using most of the power. She first tunes
the system by modifying her CredenceReputationTrustBlock so
that it uses a RandomWalkerAcquisition component instead of a
BroadcastAcquisition component.

Alternatively, Alice may work on a lower level. She decides
that she wants to change the overlay discovery network that
she is using from a Gnutella-based overlay to a supernode-
based overlay, the decision has no effect on the Trust Block
she is using, since each network implements a generic network
interface that the Trust Block uses. The new acquisition
component allows Alice to reduce the amount of energy spent
searching for trust information and provide more time for her
mobile users to access media. In this scenario, the DTT easily
allows Alice to customize the Trust Block she is using to fit her
system’s needs without having to rebuild her system beyond
the modified components. Additionally, if she does decide to
make changes to her system’s architecture, the Trust Blocks
that she uses do not have to make any changes to continue
functioning on the new system.

VI. CONCLUSION

The Distributed Trust Toolkit provides a ready-made frame-
work for implementing and evaluating trust mechanisms in
pervasive computing systems. The DTT introduces two new
abstractions: Trust Groups and Trust Blocks. Trust Groups
allow associated applications devices to share recorded trust
data and trust computations. Trust Blocks divide the imple-
mentation of trust mechanisms into three modular components:
the Presentation, Computation, and Protocol. Applications
interact with the Trust Block Presentation, which makes policy
decisions based on data gathered by the Computation compo-
nent. The Protocol component implements network-based trust
protocols and allows the DTT to interoperate with legacy trust
systems.

In our implementation, we have exploited the modular
feature of Trust Blocks by mixing and matching components
from existing Trust Blocks. Moreover, in simulation, we found
that using the DTT with Trust Groups reduced the number of
trust messages sent by an individual host by 58%, leading to
power and computation savings on mobile hosts.

VII. ACKNOWLEDGMENTS

The work presented in this paper was partially supported
under US National Science Foundation Grants CSR 0834493
and ECCS 0824120.

REFERENCES

[1] http://www.kazaa.com/us/help/faq/supernodes.htm. 2008.
[2] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D.

Keromytis. The KeyNote trust-management system version 2. RFC
2704, IETF, September 1999.

[3] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust
management. In IEEE Symposium on Security and Privacy, pages 164–
173, May 1996.

[4] Russell Housley, Warwick Ford, Tim Polk, and David Solo. Internet
x.509 public key infrastructure, certificate and CRL profile. RFC 2459,
IETF, January 1999.

[5] Lalana Kagal, Jeffrey Undercoffer, Filip Perich, Anupam Joshi, and
Tim Finin. A security architecture based on trust management for
pervasive computing systems. In Grace Hopper Celebration of Women
in Computing, October 2002.

[6] Swaroop Kalasapur, Mohan Kumar, and Behrooz Shirazi. Dynamic
service composition in pervasive computing. IEEE Transactions on
Parallel and Distributed Systems, 18(7):907–917, 2007.

[7] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina.
The eigentrust algorithm for reputation management in p2p networks.
In WWW, pages 640–651, 2003.

[8] Karl Krukow, Mogens Nielsen, and Vladimiro Sassone. A framework
for concrete reputation-systems with applications to history-based access
control. In Vijay Atluri, Catherine Meadows, and Ari Juels, editors, ACM
Conference on Computer and Communications Security, pages 260–269.
ACM, 2005.

[9] Brent Lagesse and Mohan Kumar. Ubca: Utility-based clustering
architecture for peer-to-peer systems. In ICDCS Workshops, Mobile
and Distributed Computing. IEEE Computer Society, 2007.

[10] Geetanjali Sampemane, Prasad Naldurg, and Roy H. Campbell. Access
control for active spaces. In ACSAC, pages 343–352. IEEE Computer
Society, 2002.

[11] Giovanna Di Marzo Serugendo. Trust as an interaction mechanism for
self-organising systems. In ICCS, 2004.

[12] George Theodorakopoulos and John S. Baras. Trust evaluation in ad-hoc
networks. In Third ACM workshop on Wireless Security, 2004.

[13] Kevin Walsh and Emin Gün Sirer. Fighting peer-to-peer spam and
decoys with object reputation. In SIGCOMM Workshop on Economics
of Peer-to-Peer Systems, 2005.

[14] Kevin Walsh and Emin Gün Sirer. Experience with an object reputation
system for peer-to-peer filesharing (awarded best paper). In NSDI.
USENIX, 2006.

[15] Li Xiong and Ling Liu. Building trust in decentralized peer-to-peer
electronic communitties. In International Conference on Electronic
Commerce Research, 2002.


